How to add a sensor / actuator to neocampus?

neOCampus IoT API for end-devices

End-devices API and MQTT rules **Dr Thiebolt François**, thiebolt@irit.fr

Modifications table

Date	Note
May.20	added 'value' field specifications; added 'airquality' class
Apr.20	minor correction about weather topic → outside/ambient/ <rain wind> clarify things about 'outside' MQTT topics, add attendance class topic</rain wind>
Mar.20	additional topics conventions
Feb.20	added access class topic
Jan.20	added pressure , rain , wind classes (metropole weather station)
Mar.18	added display class messages
Nov.17	initial release

Abstract

This guide explains how to authenticate against the neOCampus IoT chain and then how to publish / subscribe data through the neOCampus **MQTT broker** and its associated device management application named **sensOCampus**.

Table of contents

Abstract	1
End-devices	4
sensOCampus credentials API	5
get_credentials	5
get_config	5
summary	6
MQTT topics conventions	7
msg to a command topic	7
msg to a class topic	8
unitID and subID	9
scenario example	9
sensors auto detection and messages publishing	10
sensors and actuators uniqueness	10
neOCampus MQTT sandbox	10
example topics	10
special case topics	11
optional 'location' field	11
outside/ <xxx> topics rules</xxx>	11
Class topics and command topics	12
device	14
publish	14
subscribe	14
temperature / luminosity / co2 / humidity / pressure / weight / uv	16
publish	16
subscribe	16
rain	18
publish	18
subscribe	18
wind	20
publish	20
subscribe	21
energy	22
publish	22
subscribe	23
camera	24
digital	25
publish	25
subscribe	25
noise	27

publish	27
subscribe	27
attendance	29
publish	29
subscribe	29
airquality	30
publish	30
subscribe	30
lighting	32
publish	32
subscribe	32
dali	33
shutter	34
publish	34
subscribe	34
display	35
publish	35
subscribe	35
access	38
publish	38
subscribe	38
Annexe - A	40
A - 1 ESP8266 credentials sample code	40
A - 2 sensOCampus configuration U4/302	42
A - 3 sensOCampus LCC's AirQuality configuration	49

End-devices


What we call a **device (or end-device)** is a piece of **hardware connected to a network**.

Such a device may encompass one to several sensors / actuators. It is devices' firmware responsibility to publish sensors values to the proper topic and to subscribe to relevant topics.

In the upper example, the device is a Raspberry Pi that could be connected to either a wired / wireless network. Each kind of sensor / actuators map to a topic class. However, to be able to publish / subscribe to the MQTT broker, the device's client needs credentials. To obtain these credentials, you first need to:

- 1. declare device's MAC address to the neOCampus technical staff,
- 2. interact with the sensOCampus application that will give you your credentials.

sensOCampus is the main end-devices management application developed for neOCampus. It takes care of managing the device's own specific setup (MAC, configuration, status, topics etc).

sensOCampus credentials API

We below describe the various involved steps that end-devices need to undertake with the sensocampus application to retrieve their credentials.

- 1. get credentials → will give your device its mqtt related credentials,
- 2. get_config → your device will be given a MQTT base topic along with optional configuration registered for each peculiar device at the sensOCampus level.

get_credentials

https://sensocampus.univ-tlse3.fr/device/credentials?mac=<device_mac_addr>

... response will be in JSON format

```
{
  "login" : "<mqtt_login>",
  "password" : "<mqtt_password>",
  "server" : "neocampus.univ-tlse3.fr",
  "port" : 1883
}
```

Please pay attention to the facts that:

- password field is a one-time delivery parameter → if you lose it, you need to apply for new credentials at the neOCampus technical staff,
- "server" and "port" fields are optionals → you ought to have these default values in your code if sensOCampus does not deliver them to your device.

It's the device's own responsibility to save these credentials in some non volatile hardware. If you apply for a credentials renewal operation, both login and password will change.

get config

```
prepare HTTPS request with previously delivered credentials (https_auth) ...

get https://sensocampus.univ-tlse3.fr/device/config
```

... response will be in JSON format

```
{
    'zones': [],
    'topics': ['bu/hall']
}
```

In this simple example, we have no specific configuration (empty zones) and we must take into account the **topics field as BASE_TOPIC.**

Note: in case 'topics' contains multiple fields, just select the first one

summary

You now have the following:

login	" <mqtt_login>"</mqtt_login>
password	"< mqtt_password >"
server	neocampus.univ-tlse3.fr
port	1883 or 8883 (tls)
BASE_TOPIC	bu/hall

Later, this BASE_TOPIC means that you've been granted the following topics rules:

bu/hall/+	publish & subscribe (i.e write & read)
bu/hall/+/command	subscribe (i.e read)

In the next section, we'll start to talk about the MQTT conventions that apply to neOCampus.

MQTT topics conventions

The following describes various rules about topics conventions that apply to the neOCampus IoT.

- Each end-device get specified a BASE_TOPIC through its get config procedure,
- A BASE_TOPIC is named accordingly to <building>/<room>, eg. u4/302
- Each sensor / actuator belongs to a class (e.g temperature, co2, shutter ...) that is appended to the device's BASE_TOPIC (e.g bu/hall/temperature), named a class topic,
- Each sensor / actuator subscribe to a **command topic** with a **command** token appended to the class topic (e.g bu/hall/temperature/command)
- The **end-device** itself publish to a **class topic** (e.g **bu/hall/device**) and subscribe to a **command topic** (e.g **bu/hall/device/command**)
- Each end-device is identified by its MAC_ADDRESS,
- A sensor is either identified by an ID specified at sensOCampus server or <u>automatically discovered</u> at startup (e.g i2c scan). Sensors automatically discovered have an ID prefixed with auto (e.g 'auto C32F' with last 2 digits being end of device's MAC ADDR),
- An actuator is identified by an ID specified at sensOCampus server (e.g u4/302/shutter with 3 shutters identified as "front", "center" and "back"),
- topics prefixed with '_' are of specific use (e.g lora/... or weather/...),
- For <u>outside</u> end-devices located within the campus (e.g toulouse metropole weather station), BASE_TOPIC is outside/<class> (e.g outside/ambient/wind or outside/access ---access control gates of our university),
- For abroad end-devices (i.e not located within the campus) BASE_TOPIC is abroad/<location> e.g abroad/carcassonne/

 | building>/<room>/<kind>
- JSON frames' keys are mostly lower case ;)

Hence, for each device, each sensor and each actuator, there's:

- a class topic to publish to → BASE TOPIC / CLASS
- a command topic to subscribe to → BASE_TOPIC / CLASS / command

msg to a command topic

Whenever a message is sent to a **command topic** (e.g **bu/hall/shutter/command**), the JSON frame **OUGHT** to contain a **'dest'** field.

- 'dest': "all" → message is for all of those that subscribed to this command topic,
- 'dest': "<ID>" → message is only for those whose ID matches

Example, if you wish to send an order to a specific **device**, 'dest' will contain its **MAC_ADDRESS**. If you wish to send an order to a shutter, 'dest' will contain its ID specified at the sensOCampus interface ("front" for example).

✓ Sending order to a shutter (with proper mqtt login / passwd)

```
order: "up"
dest: "all"
or "<shutter_ID>"

Json frame as mqtt payload
```

In example above, all shutters from u4 / campusfab will receive the "up" order thus opening all of them.

msg to a class topic

Whenever a device, a sensor or an actuator send a message to a **class topic** (e.g **bu/hall/noise** or **u4/cfab/device**), associated JSON frame **OUGHT** to contains a **'unitID'** field whose value reflect the sender's identity:

• 'unitID' : "</D>"

'unitID' : "00:08:a2:1f:cb:3f"	'unitID' : 'auto_CB3F'	'unitID' : "front"
sender is a device. Note that for compatibility, a 'unit' key with the same value may be added.	sender is an auto-detected sensor usually associated with 'subID': ' <i2c_addr>' Note the last 2 digits are from device's MAC_ADDR</i2c_addr>	sender may be a sensor or actuator declared at sensOCampus level. Note a 'subID' will be added if it has been declared.

order: "idle"
unitID: "<shutter_ID>"
status: "open"

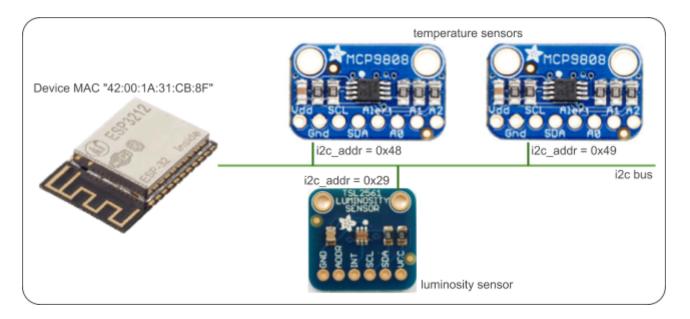
Json frame as mqtt payload

In the example above, a shutter identified by its 'unitID' sent back its status through the class topic.

REMEMBER: when declaring several devices in the same room (e.g u4/campusfab), it is the users' responsibility to manage identity uniqueness of sensors or actuators declared at the sensOCampus level.

unitID and subID

Whenever a sensor is <u>automatically</u> detected at startup (e.g i2c scan), it gets automatically attributed a 'unitID' (identity) and a 'subID' (informative only field ---e.g i2c addr)


Example:

unitID	subID	Note
'unitID' : 'auto_CB8F'	'subID' : '32'	At least one auto-detected sensor with i2c addr 0x20. Device's MAC_ADDR end with CB8F
'unitID' : 'inside'	'subID' : 'ilot1'	A sensor or actuator declared at sensOCampus

Note: the nature of the sensor will be revealed according to it class topic publishing

scenario example

Considering the following device featuring 3 x i2c sensors.

This will result in the following identity of sensors:

'unitID'	'subID'	class & command topics
auto_CB8F	41	BASE_TOPIC/luminosity BASE_TOPIC/luminosity/command
auto_CB8F	72	BASE_TOPIC/temperature BASE_TOPIC/temperature/command
auto_CB8F	73	BASE_TOPIC/temperature BASE_TOPIC/temperature/command

sensors auto detection and messages publishing

Each sensor value is sent as a separate message. It means for example that if you feature 8 temperature sensors on the same device, you'll have 8 different messages when it comes to pushing the data.

sensors and actuators uniqueness

It is the IoT manager's responsibility to ensure unitID <u>uniqueness at the room-level</u>. Of course, if you add to the same room two devices whose MAC_ADDR last 2 digits are the same ... use another device;)

neOCampus MQTT sandbox

To ease testing of your sensor / actuator, you may give a try to the neOCampus MQTT sandbox:

login	test
passwd	<ask for="" it!=""></ask>
server	neocampus.univ-tlse3.fr
port	1883
BASE_TOPIC	TestTopic/#

Hence, you won't need the sensOCampus credentials and you are free to create / read / write in any topic you want considering it is BASE_TOPIC biased.

example topics

Base : defined at <u>device</u> registration time according to location

e.g u4 / 300 or bu / hall ...

Type : kind of sensor / actuator (*module*) defined by sens**©** ampus or automagically detected

e.g shutter, luminosity, temperature, sound, lighting ...

Command: to send orders to a sensor / actuator (module)

e.g orders to shutter like UP, STOP, DOWN

special case topics

BASE_TOPIC	Description
_lora	raw end-devices values from LoRaWAN server
_weather	Toulouse metropole raw values
TestTopic	neOCampus sandbox
outside	UT3 end-devices located outdoor e.g outside/ambient/rain or outside/access for our access control system
abroad	<pre>outside of UT3 end-devices (yes, as default EVERYTHING is related to UT3), e.g abroad/<location>/<building>/<room>/<kind></kind></room></building></location></pre>

optional 'location' field

Whenever a MQTT message is received without a 'location' key in payload nor its topic beginning with 'abroad', it will get considered as an UT3 end-device.

outside/<xxx> topics rules

When it's about out-of-building sensors, we consider them as 'outside'. We present below the various MQTT topics you may encounter:

Note	'outside' related MQTT topics @ neOCampus	
deprecated	case for sensors attached to a conCentratOr u4/302/temperature { 'unitID':'outside', subID:'ouest', }	
	<pre>case for Toulouse metropole weather station outside/ambient/rain { 'unitID':'metropole', }</pre>	
	case for abroad out-of-buildings sensors abroad/carcassonne/outside/ambient/rain { 'unitID':'davis', }	
	case for access control gates for our campus outside/access { 'unitID':'carGate_main', }	

Whenever an equipment is located out-of a building (e.g beehives) we'll try to consider them as being part of a virtual building. For example, let's consider our Apiary: all beehives are part of the Apiary, even wherever those beehives are spread all over the campus.

```
e.g outside/apiary/beehive1/temperature
building=apiary,room=beehive1,kind=temperature
```


Class topics and command topics

Below is a description of the currently existing classes:

Class	Publish	Subscribe
device	BASE_TOPIC/device	BASE_TOPIC/device/command
temperature	BASE_TOPIC/temperature	BASE_TOPIC/temperature/command
luminosity	BASE_TOPIC/luminosity	BASE_TOPIC/luminosity/command
humidity	BASE_TOPIC/humidity	BASE_TOPIC/humidity/command
co2	BASE_TOPIC/co2	BASE_TOPIC/co2/command
energy	BASE_TOPIC/energy	BASE_TOPIC/energy/command
camera	BASE_TOPIC/camera	BASE_TOPIC/camera/command
digital	BASE_TOPIC/digital	BASE_TOPIC/digital/command
noise	BASE_TOPIC/noise	BASE_TOPIC/noise/command
weight	BASE_TOPIC/weight	BASE_TOPIC/weight/command
uv	BASE_TOPIC/uv	BASE_TOPIC/uv/command
rain	BASE_TOPIC/rain	BASE_TOPIC/rain/command
wind	BASE_TOPIC/wind	BASE_TOPIC/wind/command
attendance	BASE_TOPIC/attendance	BASE_TOPIC/attendance/command
airquality	BASE_TOPIC/airquality	BASE_TOPIC/airquality/command
lighting	BASE_TOPIC/lighting	BASE_TOPIC/lighting/command
dali	BASE_TOPIC/lighting	BASE_TOPIC/lighting/command
shutter	BASE_TOPIC/shutter	BASE_TOPIC/shutter/command
display	BASE_TOPIC/display	BASE_TOPIC/display/command
access	BASE_TOPIC/access	BASE_TOPIC/access/command

e.g temperature sensor PUBLISH its value in BASE TOPIC/temperature

^{...} and it also SUBSCRIBE to BASE_TOPIC/temperature/command to receive orders (e.g frequency acquisition change)

device

Basis of all sensors / actuators, end-devices are connected to a network and are identified via their MAC address.

Each device ought to be able to:

- 'publish' some information (e.g status)
- 'subscribe' to a command topic

publish

BASE_TOPIC/device	JSON frame
status	<pre>is automatically published every 30mn (default) { 'unitID': <mac_addr>, 'status': "OK", <optional fields=""> }</optional></mac_addr></pre>

Note: there's no 'values' because a device is not supposed to deliver such items.

The 'status' key:

ОК	normal operation
FAIL	an error occurred

Note: since this is only a user informative message, you can send any string you want!

subscribe

BASE_TOPIC/device/command	JSON frame
order	{ 'dest' : <mac_addr>, 'order' : "<action>", <optional fields=""> }</optional></action></mac_addr>
upgrade (firmware/application)	{ 'dest': <mac_addr>, 'order': "upgrade", <optional fields=""> } optional fields may contain - 'value' → url to firmware (e.g 'value': 'http://xxx.bin')</optional></mac_addr>
frequency change order	{ 'dest': <mac_addr>, 'order': "frequency", 'value': <integer seconds=""> }</integer></mac_addr>

Note: 'frequency' is about 'status' delivery, not 'values' (whose message does not exists).

'order' command possible actions:

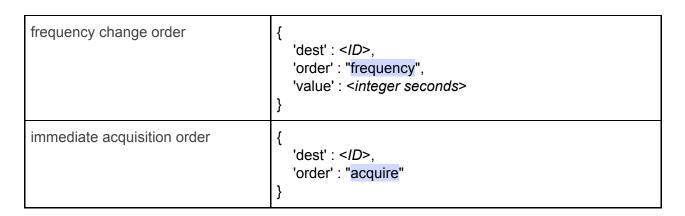
reset	reset application configuration and restart app.
restart	restart application
reboot	reboot the whole board
update	update application configuration (i.e json config from sensOCampus)
upgrade	upgrade firmware / application and restart
reinstall	[Raspberry Pi] start whole SDCard reinstallation
status	force immediate delivery of a status report to its class topic
frequency	change frequency of status report delivery (min. 10mn, max 6h)

Note that status report is automatically published for each device while it is only published on explicit request for the sensors and actuators.

temperature / luminosity / co2 / humidity / pressure / weight / uv

These classes of sensors send back ambient parameters. They are able to change their acquisition frequency and they transmit both 'value' of the sensor along with its physical unit (e.g 'value_units': 'celsius' or '%r.H.' or ...)

We describe below the various types of the 'value' field:


CLASS	'value' field
temperature, pressure, weight	FLOAT
<others></others>	INT

publish

BASE_TOPIC / CLASS	JSON frame
status	is published on request { 'unitID': <id>, 'frequency': <acquisition frequency="" seconds="">, <optional fields=""> } optional fields may contain - 'sensors' → declared sensors - 'i2c_sensors' → automatically discovered sensors</optional></acquisition></id>
value	is automatically published every <freq> seconds { 'unitID': <id>, 'value': <value>, 'value_units': "<string>" <optional fields=""> } optional fields may contain - 'subID' → either i2c addr of sensor or explicit value set at sensOCampus level</optional></string></value></id></freq>

subscribe

BASE_TOPIC/CLASS/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>

status	force immediate delivery of a status report to its class topic	
frequency	change frequency of status report delivery (min. 10mn, max 6h)	
acquire	force immediate delivery of sensor value(s).	

rain

This class of sensor sends back a broad range of values and values units (like <u>energy</u>). Beware that you could face changes in either name of units or number of items in lists (of course both will get consistent anyway).

- 'value' : ['0.0', '0.0', '0.0', '0.0', '0.0', '0.0']
- 'value_units' : ['stormRain_cm', 'dayRain_cm', 'rain24_cm', 'hourRain_cm', 'rainRate_cm_per_hour', 'monthRain_cm']

We describe below the various types of the 'value' field:


CLASS	'value' field
rain	LIST

publish

BASE_TOPIC / rain	JSON frame
status	is published on request { 'unitID': <id>, 'frequency': <acquisition frequency="" seconds="">, <optional fields=""> } optional fields may contain - 'sensors' → declared sensors - 'i2c_sensors' → automatically discovered sensors</optional></acquisition></id>
value	is automatically published every <freq> seconds { 'unitID': <id>, 'value': [<value>, <value>], 'value_units': ["<string>", "<string>"] <optional fields=""> } optional fields may contain - 'subID' → either i2c addr of sensor or explicit value set at sensOCampus level</optional></string></string></value></value></id></freq>

subscribe

BASE_TOPIC/rain/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>

status	force immediate delivery of a status report to its class topic	
frequency	change frequency of status report delivery (min. 10mn, max 6h)	
acquire	force immediate delivery of sensor value(s).	

wind

This class of sensor sends back a broad range of values and values units (like <u>energy</u>). Beware that you could face changes in either name of units or number of items in lists (of course both will get consistent anyway).

- 'value' : [326.25, 3.79, 9.66, 315.0]
- 'value_units' : ['windDir', 'windSpeed_kph', 'windGust_kph', 'windGustDir']

Unless otherwise stated, wind directions are degrees (direction where the wind is blowing to) and wind speeds are kilometers per hour.

We describe below the various types of the 'value' field:

CLASS	'value' field
wind	LIST

publish

BASE_TOPIC / wind	JSON frame
status	is published on request { 'unitID': <id>, 'frequency': <acquisition frequency="" seconds="">, <optional fields=""> } optional fields may contain - 'sensors' → declared sensors - 'i2c_sensors' → automatically discovered sensors</optional></acquisition></id>
value	is automatically published every <freq> seconds { 'unitID': <id>, 'value': [<value>, <value>], 'value_units': ["<string>", "<string>"] <optional fields=""> } optional fields may contain - 'subID' → either i2c addr of sensor or explicit value set at sensOCampus level</optional></string></string></value></value></id></freq>

subscribe

BASE_TOPIC/wind/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>
frequency change order	{ 'dest' : <id>, 'order' : "frequency", 'value' : <integer seconds=""> }</integer></id>
immediate acquisition order	{ 'dest' : <id>, 'order' : "acquire" }</id>

status	force immediate delivery of a status report to its class topic
frequency change frequency of status report delivery (min. 10mn, max 6h)	
acquire	force immediate delivery of sensor value(s).

energy

Power and energy consumption is usually gathered from Modbus energy meters. This kind of sensor can't be automatically detected, hence requiring a sensOCampus definition.

Moreover, each sensor gives a bunch a data (power, freq, energy, power_factor, intensity, voltage ...) all packed as a list in the 'value' field along with their corresponding units in 'value_units':

- 'value' : ['158426.00', '158420.00', '235.22', '0.14', '20.00', '20.00', '30.00', '0.70']
- 'value_units' : ['Wh', 'Ea+', 'V', 'A', 'W', 'VAR', 'VA', 'cosPhi']

We describe below the various types of the 'value' field:

CLASS	'value' field
energy	LIST

publish

BASE_TOPIC / energy	JSON frame
status	<pre>is published on request { 'unitID': <id>, 'frequency': <acquisition frequency="" seconds="">, 'backend': <backend type="">, <optional fields=""> } optional fields may contain - 'link': "/dev/usb0" (for example), - 'link_speed': 9600, - 'nodes': [(<modbus addr="">,<meter_name>),]</meter_name></modbus></optional></backend></acquisition></id></pre>
value	is automatically published every <freq> seconds { 'unitID': <id>, 'value': [<value>, <value>], 'value_units': ["<string>", "<string>"] } Note: see above for a description of 'value' and 'value_units'</string></string></value></value></id></freq>

modbus	either RS-485 or TCP modbus energy meter
rf868	868MHz energy meter (from consOCampus project)
unknown	as you guess ;)

subscribe

BASE_TOPIC/energy/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>
frequency change order	{ 'dest' : <id>, 'order' : "frequency", 'value' : <integer seconds=""> }</integer></id>
immediate acquisition order	{ 'dest' : <id>, 'order' : "acquire" }</id>

status	force immediate delivery of a status report to its class topic
frequency	change frequency of status report delivery (min. 10mn, max 6h)
acquire	force immediate delivery of sensor value(s).

camera

digital

This class of sensor is related to everything that is relevant to digital inputs (e.g open window detector, motion sensor etc). This kind of sensor ought to get declared at the sensOCampus level.

For each event on a digital input (i.e rising_edge and falling_edge), a message will be sent immediately (i.e no timer involved but direct hardware events management).

We describe below the various types of the 'value' field:

CLASS	'value' field
digital	INT

publish

BASE_TOPIC / digital	JSON frame
status	<pre>is published on request { 'unitID': <id>, 'sensors': [[101, "button", "ilot1"], [102, "presence", "ilot1"]] } 'sensors': [(input, type, subID),] these values are coming from sensOCampus definitions</id></pre>
value	<pre>is automatically published for each event on input(s) { 'unitID': <id>, 'value': 1, 'input': 102, 'type': "presence" or "on_off" or 'subID': "ilot1" }</id></pre>

subscribe

BASE_TOPIC/digital/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>

'order' command possible actions:

status force immediate delivery of a status report to its class topic

noise

This sensor amplifies sound from a microphone and sets a threshold on a comparator delivering pulses when sound intensity goes beyond. Pulses count are recorded over a sliding window giving their total number for an elapsed time (default 5s). If this total number of pluses is higher than a user defined threshold, then a noise message is sent.

Thus, this sensor is driven by two threshold:

- **sensitivity** → 0 to 100%. Set DAC output to the comparator,
- **threshold** → noise limit (pulses count).

We describe below the various types of the 'value' field:

CLASS	'value' field
noise	INT

publish

BASE_TOPIC / noise	JSON frame
status	is published on request { 'unitID': <id>, 'sensitivity': <0 to 100%>, 'threshold': <integer>, <optional fields=""> } optional fields may contain - '_scan_window' → size of sliding window</optional></integer></id>
value	is automatically published upon noise limit reached { 'unitID': <id>, 'value': <sum count="" pulses="">, 'value_units': "pulses" <optional fields=""> } optional fields may contain - 'input' → pin used to count pulses - 'subID' → DAC i2c addr</optional></sum></id>

subscribe

BASE_TOPIC/noise/command	JSON frame
send status order	{ 'dest': <id>, 'order': "status" }</id>

```
change sensitivity order

{
    'dest': <ID>,
    'order': "sensitivity",
    'value': <integer 0 to 100%>
}

change noise limit threshold order
(i.e pulse count limit)

{
    'dest': <ID>,
    'order': "threshold",
    'value': <integer>
}

immediate acquisition order

{
    'dest': <ID>,
    'order': "acquire"
}
```

'order' command possible actions:

status	force immediate delivery of a status report to its class topic	
sensitivity	set new value to DAC output used as input to the comparator	
threshold	set noise limit through a maximum number of pulses count across the whole sliding windows	
acquire	force immediate delivery of sensor value(s).	

Note: there's no 'frequency' order because value delivery is not dependent on a timer.

attendance

This class of sensor is related to everything that is relevant to flow of people, bicycles, cars etc. These sensors give an estimation about a flow of people for example that are going in or out of a place. This can also be used to simply count a number of people in a room.

We describe below the various types of the 'value' field:

CLASS	'value' field
attendance	INT

publish

BASE_TOPIC / attendance	JSON frame
status	is published on request { 'unitID': <id>, 'type': '[FLOW COUNTER]' } e.g people flow meters, car counters</id>
value	<pre>is automatically published for each event on input(s) { 'unitID' : <id>, 'value': <int>, 'value_units' : "people" or "car" or "bicycle", 'type': '[FLOW COUNTER]', 'subID' : [<optional>] }</optional></int></id></pre>

subscribe

BASE_TOPIC/digital/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>

'order' command possible actions:

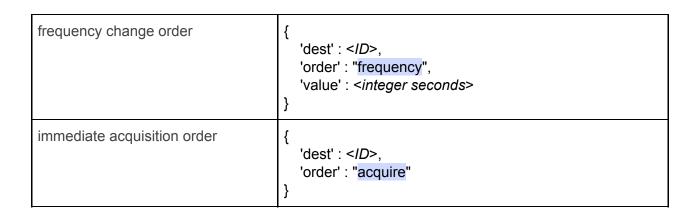
status force immediate delivery of a status report to its class topic

airquality

This class of sensors may send back a broad range of values and values units. However, unlike <u>energy</u>, we'll keep the various values as standalone ones (i.e no lists of values and value_units). Since concentration of most organic components are given as 'ppm' units, we'll make use of the 'subID' field to create a distinguo between the various components:

```
{ "unitId":"lcc_sensor", "subId":"NO", "value":xxx, "value_units":"ppm" }
```

We describe below the various types of the 'value' field:


CLASS	'value' field
airquality	INT

publish

BASE_TOPIC / rain	JSON frame
status	is published on request { 'unitID': <id>, 'frequency: <acquisition frequency="" seconds="">, <optional fields=""> } optional fields may contain - 'sensors' → declared sensors - 'i2c_sensors' → automatically discovered sensors - others items relevant to your kinds of sensors</optional></acquisition></id>
value	is automatically published every <freq> seconds { 'unitlD': <id>, 'value': <value>, 'value_units': "ppm", 'sublD': "<string>", <optional fields=""> } - 'sublD' → either i2c addr of sensor or explicit value set at sensOCampus level</optional></string></value></id></freq>

subscribe

BASE_TOPIC/rain/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : "status" }</id>

status	force immediate delivery of a status report to its class topic	
frequency	y change frequency of values messages.	
acquire force immediate delivery of sensor value(s).		

lighting

Like all actuators, its setup is defined at the sensOCampus level.

This actuator drives various lighting command systems like **telerupteur** or **directly connected** lights sources.

We describe below the various types of the 'value' field:

CLASS	'value' field
lighting	NONE

publish

BASE_TOPIC / lighting	JSON frame
status	<pre>is published on request and upon light event (on, off) { 'unitID': <id>, 'status': '[ON OFF unknown]' }</id></pre>

subscribe

BASE_TOPIC/lighting/command	JSON frame
order	{ 'dest': <id>, 'order': '[ON OFF] or status' <optional fields=""> } optional fields may contain - 'value': '<0 to 100>' → percentage of luminosity</optional></id>

status	force immediate delivery of a status report to its class topic
ON or OFF	set output to ON or OFF. Note: if teleruptor type, any order will just toggle the output (i.e we don't know whether it is on or off) Note: for variable lighting systems, an additional 'value' field may contains an integer ranging from 0 to 100 (percents)

dali

shutter

Like all actuators, its setup is defined at the sensOCampus level.

This actuator is able to drive two kinds of shutters (blinds): **wired** and **wireless blinds** (difference is the way outputs are activated ---i.e short pulses for wireless).

We describe below the various types of the 'value' field:

CLASS	'value' field
shutter	NONE

publish

BASE_TOPIC / shutter	JSON frame
status	is published on request and upon shutter event { 'unitID': <id>, 'status': '[CLOSED OPENED UNKNOWN]', 'order': '[UP DOWN STOP UNKNOWN]' } 'status' field reflect current state of the shutter 'order' field is the action currently undertaken</id>

subscribe

BASE_TOPIC/shutter/command	JSON frame
order	{ 'dest' : < <i>ID</i> >, 'order' : '[UP DOWN STOP] or <i>status</i> ' }

status	force immediate delivery of a status report to its class topic
UP DOWN STOP	Set action to open, close or stop shutter in its current position

display

This kind of actuator is able to display some web pages. Users can send a list of web pages that will get displayed according to a scheduling based on a timer value. This timer value may get changed along with the others parameters like time_on and time_off that define when to switch ON and when to switch OFF the display itself.

We describe below the various types of the 'value' field:

С	LASS	'value' field
d	isplay	NONE

publish

BASE_TOPIC / display	JSON frame
status	is published on request and upon page change and upon order received and upon power mode change { 'unitlD': <id>, 'status': '[OK KO]', 'pwr_status': '[ON OFF UNKNOWN </id>

subscribe

BASE_TOPIC/display/command	JSON frame
send status order	{ 'dest' : < <i>ID</i> >, 'order' : ' <i>status</i> '

	T
	}
order to set mode	{ 'dest' : <id>, 'order' : 'mode', 'value' : '[NORMAL FORCEON FORCEOFF]' }</id>
order to set web pages frequency	{ 'dest' : <id>, 'order' : 'frequency', 'value' : <integer> }</integer></id>
order to set URLs list	{ 'dest' : <id>, 'order' : 'url', 'value' : 'url' or [url1, url2, urlx]' }</id>
order to set 'time_on' events	{ 'dest' : <id>, 'order' : 'time_on", 'value' : "06:45" or "1-5 06:45" or "1,3,4 09:00" }</id>
order to set 'time_off' events	{ 'dest' : <id>, 'order' : 'time_off'', 'value' : "19:30" }</id>

CT CT COMMISSION	a peccinic actions.
status	force immediate delivery of a status report to its class topic
mode	Set display mode. At startup, we're in NORMAL mode (i.e ON or OFF). If mode is set to FORCEON , the display will switch ON and will then automatically switch back to normal mode on next 'time_on' event. If set to FORCEOFF , the display will stay OFF until the next reboot ! or if you switch back to another mode.
frequency	set timeout (seconds) before changing web page to display
url(s)	Either set a single url (i.e string) or a list of urls
time_on	Kind of 'crontab' value: - hours:minutes - time of days (e.g 1-5) + hours:minutes e.g: "1-5 7:30"
time_off	hours:minutes to switch OFF video output e.g: "19:30"

access

This topic is dedicated to access control systems. These systems are usually installed on front doors for rooms access security or related to external gates when they're involved in vehicle access authorisation.

• end-device: publish to BASE_TOPIC / access

• end-device: subscribe to BASE_TOPIC / access / command

We describe below the various types of the 'value' field:

CLASS	'value' field
access	NONE

publish

BASE_TOPIC / access	JSON frame
status	is published upon status order received { 'unitID': <id>, 'status': '[OK KO]', <others> } <others> could be a detected camera, a NFC reader etc. See accessOCampus developer guide.</others></others></id>
access	is published upon a USER applying to an access { 'unitID': <id>, 'seq_id': '<access number="" seq.="">, 'auth_type': <see accessocampus="" doc="">, 'nfc_uid': <see accessocampus="" doc="">, 'passcode': <see accessocampus="" doc="">, 'thermal_detect': <see accessocampus="" doc="">, 'image': <see accessocampus="" doc="">, 'image': <see accessocampus="" doc="">, } See accessOCampus developer guide for fields details.</see></see></see></see></see></see></access></id>

subscribe

BASE_TOPIC/access/command	JSON frame
send status order	{ 'dest' : <id>, 'order' : 'status' }</id>

grant access order (i.e door/gate will open)	{ 'dest' : <id>, 'seq_id' : <from access="" field="" request="" seq_id="">, 'order' : 'grant' }</from></id>
deny access order (i.e door/gate will remain closed)	{ 'dest': <id>, 'seq_id': <from access="" field="" request="" seq_id="">, 'order': 'deny' }</from></id>
ask_code order (people has not been recognized by the camera → ask for code)	{ 'dest': <id>, 'order': 'ask_code' }</id>
force_open order	{ 'dest': <id>, 'order': 'force_open' }</id>
force_close order	{ 'dest': <id>, 'order': 'force_close' }</id>
normal mode order (to cancel previous force_xxx orders)	{ 'dest' : <id>, 'order' : 'normal' }</id>

'order' command possible actions:

status	force immediate delivery of a status report to its class topic
grant	subsequently to an 'access request', will authorize access
deny	subsequently to an 'access request', will deny access
ask_code	people not recognized (camera), ask for an additional code
force_open	special_mode: system remains open (e.g journée portes ouvertes)
force_close special_mode: system remains closed (e.g burglar emergency)	
normal	end of 'special_mode': go back to regular ops

Annexe - A

A - 1 ESP8266 credentials sample code

```
bool _http_get( const char *url, char *buf, size_t bufsize, const char *login, const char
*passwd ) {
 HTTPClient http;
 http.begin(url);
 log_debug(F("\n[HTTP] GET url : ")); log_debug(url); log_flush();
 // authentication ?
 if( login!=NULL and passwd!=NULL ) {
   http.setAuthorization( login, passwd);
  }
 // perform GET
 int httpCode = http.GET();
 // connexion failed to server ?
 if( httpCode < 0 ) {</pre>
   log error(F("\n[HTTP] connexion error code : ")); log debug(httpCode,DEC); log flush();
   return false;
  }
 // check for code 200
 if( httpCode == HTTP_CODE_OK ) {
   String payload = http.getString();
   snprintf( buf, bufsize, "%s", payload.c_str() );
  }
  else {
    log_error(F("\n[HTTP] GET retcode : ")); log_debug(httpCode,DEC); log_flush();
  }
 // close connexion established with server
 http.end();
 yield();
 return ( httpCode == HTTP_CODE_OK );
```

```
// HTTP get
bool http_get( const char *url, char buf[], size_t bufsize ) {
    return _http_get( url, buf, bufsize, NULL, NULL );
}

// HTTP get with credentials
bool http_get( const char *url, char *buf, size_t bufsize, const char *login, const char *passwd ) {
    return _http_get( url, buf, bufsize, login, passwd );
}
```

A - 2 sensOCampus configuration U4/302

• [2020, March] sensOCampus configuration for u4/302 located end-device

```
{
       "topic": "u4/302",
       "modules":
                       "module": "Energy",
                        "unit": "modbus_rs485",
                        "params":
                                        "param": "frequency",
                                        "value": 0
                                        "param": "backend",
"value": "modbus"
                                        "param": "link",
"value": "/dev/ttyUSB0"
                                        "param": "link speed",
                                        "value": 9600
                                },
                                        "param": "subIDs",
                                        "value": [
                                                                "chauffage",
                                                                "prises1",
                                                                "prises2",
                                                                "prises3"
                                                        ]
                                },
                                        "param": "addr",
                                        "value": [
                                                                1,
                                                                88.
                                                                65,
                                                                62
                                }
               },
                       "module": "Shutter",
                       "unit": "front",
                        "params":
                                        "param": "shutterType",
                                        "value": "wired"
                                        "param": "courseTime",
                                        "value": 20
                                        "param": "upOutput",
                                        "value": 100
                                        "param": "downOutput",
                                        "value": 101
```

```
},
        "module": "Shutter",
        "unit": "center",
        "params":
                         "param": "shutterType",
"value": "wired"
                 },
                         "param": "courseTime",
                         "value": 20
                         "param": "upOutput",
"value": 102
                         "param": "downOutput",
                         "value": 103
                }
        ]
},
        "module": "Shutter",
        "unit": "back",
        "params":
                         "param": "shutterType",
"value": "wired"
                 },
                         "param": "courseTime",
                         "value": 20
                         "param": "upOutput",
                         "value": 104
                         "param": "downOutput",
                         "value": 105
                }
},
        "module": "Digital",
"unit": "inside",
        "params":
                         "param": "frequency",
                         "value": 0
                 },
                         "param": "subIDs",
                         "value": [
                                                  "ilot1",
                                                  "ilot2",
                                                  "ilot3",
                                                  "window"
                                          ]
                 },
                         "param": "inputs",
                         "value": [
                                                  101,
                                                  106,
                                                  111,
                                                  115
```

```
"param": "types",
                        "value": [
                                                 "presence",
                                                 "presence",
                                                 "presence",
                                                 "open_close"
        ]
},
        "module": "Luminosity",
        "unit": "inside",
        "params":
                        "param": "frequency",
"value": 0
                },
                        "param": "subIDs",
"value": [
                                                 "ilot1",
                                                 "ilot2",
                                                 "ilot3"
                                         ]
                },
                        "param": "inputs",
                        "value": [
                                                 100,
                                                 105,
                                                 110
                                         ]
                },
                        "param": "min",
                        "value": [
                                                 0,
                                                 Ο,
                                                 0
                                         ]
                },
                        "param": "max",
                        "value": [
                                                 1000,
                                                 1000,
                                                 1000
                                         ]
                },
                        "param": "units",
                        "value": [
                                                 "",
                                         ]
},
        "module": "Luminosity",
        "unit": "outside",
        "params":
                        "param": "frequency", "value": 60
                },
```

```
"param": "subIDs",
                         "value": [
                                                  "ouest"
                         "param": "inputs",
                         "value": [
                                                  119
                                        ]
                 },
                         "param": "min",
                         "value": [
                 },
                         "param": "max",
"value": [
                                                  1400
                                        ]
                },
                         "param": "units",
                         "value": [
                                                  "w/m2"
                                         ]
               }
        ]
},
        "module": "Temperature",
        "unit": "inside",
        "params":
                         "param": "frequency",
"value": 0
                },
                         "param": "subIDs",
"value": [
                                                  "ilot1",
                                                  "ilot2",
"ilot3"
                                          ]
                 },
                         "param": "inputs",
"value": [
                                                  103,
                                                  108,
                                                  113
                                         ]
                 },
                         "param": "min",
                         "value": [
                                                  5,
                                                  5,
                                                  5
                                         ]
                         "param": "max",
                         "value": [
                                                  40,
                                                  40,
                                                  40
                                          ]
                 },
```

```
"param": "units",
                       "value": [
                                       ]
              }
},
        "module": "Temperature",
        "unit": "outside",
        "params":
                       "param": "frequency",
                       "value": 0
               },
                       "param": "subIDs",
                       "value": [
                                              "ouest"
                                      ]
               },
                       "param": "inputs",
                       "value": [
                                               117
               },
                       "param": "min",
                       "value": [
               },
                       "param": "max",
"value": [
                                               50
               },
                       "param": "units",
                       "value": [
                                     ]
       ]
},
       "module": "Humidity",
        "unit": "inside",
        "params":
                       "param": "frequency",
                       "value": 0
               },
                       "param": "subIDs",
"value": [
                                              "ilot1",
                                               "ilot2",
"ilot3"
                                       ]
               },
                       "param": "inputs",
                       "value": [
                                               104,
                                               109,
```

```
114
                },
                         "param": "min",
                         "value": [
                                                 30,
                                                 30,
                                                 30
                                         ]
                },
                         "param": "max",
"value": [
                                                 80,
                                                 80,
                                                 80
                                         ]
                },
                         "param": "units",
                         "value": [
                                                 "",
                                         ]
               }
},
        "module": "Humidity",
"unit": "outside",
        "params":
                         "param": "frequency",
                         "value": 0
                },
                         "param": "subIDs",
                         "value": [
                                                 "ouest"
                                        ]
                },
                         "param": "inputs",
                         "value": [
                                                 118
                },
                         "param": "min",
                         "value": [
                },
                         "param": "max",
"value": [
                                                 100
                                         ]
                },
                         "param": "units",
                         "value": [
               }
},
        "module": "CO2",
        "unit": "inside",
```

```
"params":
                                       "param": "frequency",
                                       "value": 0
                               },
                                       "param": "subIDs",
"value": [
                                                              "ilot1",
                                                              "ilot2",
                                                              "ilot3"
                                                      ]
                               },
                                       "param": "inputs",
                                       "value": [
                                                             102,
                                                             107,
                                                              112
                                                      ]
                               },
                                       "param": "min",
"value": [
                                                              Ο,
                                                              0,
                                                              0
                                                     ]
                               },
                                       "param": "max",
"value": [
                                                              2000,
                                                              2000,
                                                              2000
                                                      ]
                               },
                                       "param": "units",
                                       "value": [
                                                              "",
}
]
}
                                                      ]
```

A - 3 sensOCampus LCC's AirQuality configuration

• [2020, Aug.] sensOCampus configuration for LCC's AirQuality sensor

```
{
       "topic": "irit2/366",
       "modules":
                       "module": "airquality",
                       "unit": "lcc_sensor",
                       "params":
                                       "param": "frequency",
                                       "value": 0
                               },
                                       "param": "subIDs",
                                       "value": [
                                                               "NO2",
                                                               "CO",
                                                               "CH20",
                                                               "NO2_alt"
                                                       ]
                               },
                                       "param": "inputs",
                                       "value": [
                                                               [ 16, 17, 5, 18, 35 ],
[ 19, 21, 22, 23, 34 ],
                                                               [ 13, 12, 14, 27, 33 ],
                                                               [ 15, 2, 0, 4, 32 ]
                                                       ]
                               },
                                       "param": "outputs",
                                       "value": [
                                                               -1,
                                                               -1,
                                                               25,
                                                               26
                                                       ]
                             }
                 ]
```

Note: 'input' parameters are specified as lists; latest element of the list is the analog input from the amplifier.