

neOCampus IoT
API for end-devices

End-devices API and MQTT rules
Dr Thiebolt François​, ​thiebolt@irit.fr

Modification table

Date Note

may.2

0

added 'value' field specifications

apr.20 minor correction about weather topic → ​outside/ambient/<rain|wind…>
clarify things about 'outside' MQTT topics, add ​attendance​ class topic

mar.20 additional topics conventions

feb.20 added ​access​ class topic

jan.20 added ​pressure​, ​rain​, ​wind​ … classes (metropole weather station)

mar.18 added ​display​ class messages

nov.17 initial release

Abstract
This guide explains how to authenticate against the neOCampus IoT chain and then how to publish
/ subscribe data through the neOCampus ​MQTT broker and its associated device management
application named ​sensOCampus​.

1

ne​OC​ampus / sens​OC​ampus device management / end-user device API

Table of contents

Abstract 1

End-devices 4
sensOCampus credentials API 5

get_credentials 5
get_config 5
summary 6

MQTT topics conventions 7
msg to a command topic 7
msg to a class topic 8
unitID and subID 9

scenario example 9
sensors auto detection and messages publishing 10
sensors and actuators uniqueness 10
neOCampus MQTT sandbox 10
example topics 10
special case topics 11
optional 'location' field 11
outside/<xxx> topics rules 11

Class topics and command topics 12
device 13

publish 13
subscribe 13

temperature / luminosity / co2 / humidity / pressure / weight / uv 15
publish 15
subscribe 15

rain 17
publish 17
subscribe 17

wind 19
publish 19
subscribe 20

energy 21
publish 21
subscribe 22

camera 23
digital 24

publish 24
subscribe 24

noise 26

2 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

publish 26
subscribe 26

attendance 28
publish 28
subscribe 28

lighting 29
publish 29
subscribe 29

dali 30
shutter 31

publish 31
subscribe 31

display 32
publish 32
subscribe 32

access 35
publish 35
subscribe 35

Annexe - A 37
A - 1 ESP8266 credentials sample code 37
A - 2 sensOCampus configuration U4/302 39

3 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

End-devices
What we call a ​device (or end-device) ​is a piece of ​hardware connected to a network​.
Such a device may encompass one to several sensors / actuators. It is devices' firmware
responsibility to publish sensors values to the proper topic and to subscribe to relevant topics.

In the upper example, the device is a Raspberry Pi that could be connected to either a wired /
wireless network. Each kind of sensor / actuators map to a topic class. However, to be able to
publish / subscribe to the MQTT broker, the device's client needs credentials. To obtain these
credentials, you first need to:

1. declare device's MAC address to the ne​OC​ampus technical staff,
2. interact with the sens​OC​ampus application that will give you your credentials.

sens​OC​ampus is the main end-devices management application developed for neOCampus. It
takes care of managing the device's own specific setup (MAC, configuration, status, topics etc).

4 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

sensOCampus credentials API
We below describe the various involved steps that end-devices need to undertake with the
sens​OC​ampus application to retrieve their credentials.

1. get_credentials ​ → will give your device its mqtt related credentials,
2. get_config → your device will be given a ​MQTT base topic along with optional

configuration registered for each peculiar device at the sens​OC​ampus level.

get_credentials

https://sensocampus.univ-tlse3.fr/device/credentials?mac=<​device_mac_addr​>

… response will be in JSON format

{

 "login" : "<​mqtt_login​>",

 "password" : "<​mqtt_password​>",

 "server" : "neocampus.univ-tlse3.fr",

 "port" : 1883

}

Please pay attention to the facts that:

● password ​field is a one-time delivery parameter → if you lose it, you need to apply for new
credentials at the ne​OC​ampus technical staff,

● "​server​" and "​port​" fields are ​optionals → you ought to have these default values in your
code if sens​OC​ampus does not deliver them to your device.

It's the device's own responsibility to save these credentials in some non volatile hardware. If you
apply for a credentials renewal operation, both login and password will change.

get_config

prepare HTTPS request with previously delivered credentials (https_auth) …

get​ ​https://sensocampus.univ-tlse3.fr/device/config

… response will be in JSON format

{

 'zones': [],

 'topics': ['​bu/hall​']
}

In this simple example, we have no specific configuration (empty zones) and we must take into
account the ​topics field as BASE_TOPIC.
Note: in case 'topics' contains multiple fields, just select the first one

5 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

summary
You now have the following:

login "<​mqtt_login​>"

password "<​mqtt_password​>"

server neocampus.univ-tlse3.fr

port 1883 or 8883 (tls)

BASE_TOPIC bu/hall

Later, this BASE_TOPIC means that you've been granted the following topics rules:

bu/hall​/+ publish & subscribe (i.e write & read)

bu/hall​/+/command subscribe (i.e read)

In the next section, we'll start to talk about the MQTT conventions that apply to ne​OC​ampus.

6 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

MQTT topics conventions
The following describes various rules about topics conventions that apply to the ne​OC​ampus IoT.

● Each ​end-device​ get specified a ​BASE_TOPIC​ through its ​get_config ​ procedure,
● A ​BASE_TOPIC​ is named accordingly to ​<building>/<room> ​, eg. ​u4/302
● Each sensor / actuator belongs to a ​class (e.g temperature, co2, shutter …) that is

appended​ to the device's ​BASE_TOPIC​ (e.g ​bu/hall/temperature​), named a ​class topic​,
● Each sensor / actuator subscribe to a ​command topic with a ​command token appended

to the class topic (e.g​ bu/hall/temperature/command​)
● The ​end-device itself publish to a ​class topic (e.g ​bu/hall/device​) and subscribe to a

command topic​ (e.g ​bu/hall/device/command​)
● Each​ end-device​ is identified by its ​MAC_ADDRESS​,
● A ​sensor is either identified by an ID specified at sensOCampus server or ​automatically

discovered at startup (e.g i2c scan). Sensors automatically discovered have an ID prefixed
with auto (e.g 'auto_C32F' with last 2 digits being end of device's MAC_ADDR),

● An ​actuator is identified by an ID specified at sensOCampus server (e.g ​u4/302/shutter
with 3 shutters identified as "front", "center" and "back"),

● topics prefixed with '​_​' are of specific use (e.g ​_lora​/…​ or ​_weather​/…​) ,
● For ​outside end-devices located ​within the campus (e.g toulouse metropole weather

station), ​BASE_TOPIC is ​outside/<class> (e.g ​outside/ambient/wind or
outside/access​ ---access control gates of our university),

● For abroad end-devices (i.e not located within the campus) ​BASE_TOPIC is
abroad​/<location> ​e.g ​abroad/carcassonne/<building>/<room>/<kind>

● JSON frames' keys are mostly lower case ;)

Hence, for each device, each sensor and each actuator, there's:

● a ​class topic​ to publish to → BASE_TOPIC / CLASS
● a ​command topic​ to subscribe to → BASE_TOPIC / CLASS / ​command

msg to a command topic
Whenever a message is sent to a ​command ​topic (e.g ​bu/hall/shutter/command​), the JSON frame
OUGHT​ to contain a ​'dest'​ field.

● 'dest' : "​all​" → message is for all of those that subscribed to this command topic,
● 'dest' : "<​ID​>" → message is only for those whose ID matches

Example, if you wish to send an order to a specific ​device​, 'dest' will contain its ​MAC_ADDRESS​.
If you wish to send an order to a shutter, 'dest' will contain its ID specified at the sens​OC​ampus
interface ("front" for example).

7 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

In example above, all shutters from ​u4 / campusfab will receive the "​up​" order thus opening all of
them.

msg to a class topic
Whenever a device, a sensor or an actuator send a message to a ​class topic (e.g ​bu/hall/noise or
u4/cfab/device​), associated JSON frame ​OUGHT to contains a '​unitID​' field whose value reflect the
sender's identity:

● 'unitID' : "<​ID​>"

'unitID' : "00:08:a2:1f:cb:3f" 'unitID' : 'auto_CB3F' 'unitID' : "front"

sender is a device.
Note​ that for compatibility, a
'unit' key with the same value
may be added.

sender is an auto-detected
sensor usually associated with
'subID' : '​<i2c_addr>​'
Note​ the last 2 digits are from
device's MAC_ADDR

sender may be a sensor or
actuator declared at
sensOCampus level.
Note​ a 'subID' will be added if
it has been declared.

In the example above, a shutter identified by its 'unitID' sent back its status through the class topic.

REMEMBER​: when declaring several devices in the same room (e.g ​u4/campusfab​), it
is the users' responsibility to manage identity uniqueness of sensors or actuators
declared at the sens​OC​ampus level.

8 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

unitID and subID
Whenever a sensor is ​automatically detected at startup (e.g i2c scan), it gets automatically
attributed a 'unitID' (identity) and a 'subID' (informative only field ---e.g i2c addr)

Example:

unitID subID Note

'unitID' : '​auto_CB8F​' 'subID' : '32' At least one auto-detected sensor with i2c addr
0x20. Device's MAC_ADDR end with CB8F

'unitID' : '​inside​' 'subID' : 'ilot1' A sensor or actuator declared at sensOCampus

Note: the nature of the sensor will be revealed according to it class topic publishing

scenario example

Considering the following device featuring 3 x i2c sensors.

This will result in the following identity of sensors:

'unitID' 'subID' class & command topics

auto_CB8F 41 BASE_TOPIC/luminosity

BASE_TOPIC/luminosity/command

auto_CB8F 72 BASE_TOPIC/temperature

BASE_TOPIC/temperature/command

auto_CB8F 73 BASE_TOPIC/temperature

BASE_TOPIC/temperature/command

9 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

sensors auto detection and messages publishing
Each sensor value is sent as a separate message. It means for example that if you feature 8
temperature sensors on the same device, you'll have 8 different messages when it comes to
pushing the data.

sensors and actuators uniqueness
It is the IoT manager's responsibility to ensure unitID ​uniqueness at the room-level​.
Of course, if you add to the same room two devices whose MAC_ADDR last 2 digits are the same
… use another device ;)

neOCampus MQTT sandbox
To ease testing of your sensor / actuator, you may give a try to the ne​OC​ampus MQTT sandbox:

login test

passwd <​ask for it!​>

server neocampus.univ-tlse3.fr

port 1883

BASE_TOPIC TestTopic/#

Hence, you won't need the sens​OC​ampus credentials and you are free to create / read / write in
any topic you want considering it is BASE_TOPIC biased.

example topics

10 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

special case topics

BASE_TOPIC Description

_lora raw end-devices values from LoRaWAN server

_weather Toulouse metropole raw values

TestTopic ne​OC​ampus sandbox

outside UT3 end-devices located outdoor e.g ​outside/ambient/rain ​or
outside/access ​for our access control system

abroad outside of UT3 end-devices (yes, as default EVERYTHING is related to UT3),
e.g ​abroad/<location>/<building>/<room>/<kind>

optional 'location' field
Whenever a MQTT message is received without a ​'location' key in payload nor its topic
beginning with ​'abroad'​, it will get considered as an UT3 end-device.

outside/<xxx> topics rules
When it's about out-of-building sensors, we consider them as 'outside'. We present below the
various MQTT topics you may encounter :

Note 'outside' related MQTT topics @ neOCampus

deprecated case for sensors attached to a conCentratOr

u4/302/temperature { 'unitID':'outside', subID:'ouest', … }

 case for Toulouse metropole weather station

outside/ambient/rain​ { 'unitID':'metropole', … }

 case for abroad out-of-buildings sensors

abroad/carcassonne/​outside/ambient/rain​ { 'unitID':'davis', … }

 case for access control gates for our campus

outside/access { 'unitID':'carGate_main', … }

Whenever an equipment is located out-of a building (e.g beehives) we'll try to consider them as
being part of a virtual building. For example, let's consider our Apiary: all beehives are part of the
Apiary, even wherever those beehives are spread all over the campus.

e.g ​outside/apiary/beehive1/temperature
building=apiary,room=beehive1,kind=temperature

11 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

Class topics and command topics

Below is a description of the currently existing classes:

Class Publish Subscribe

device BASE_TOPIC/device BASE_TOPIC/device/command

temperature BASE_TOPIC/temperature BASE_TOPIC/temperature/command

luminosity BASE_TOPIC/luminosity BASE_TOPIC/luminosity/command

humidity BASE_TOPIC/humidity BASE_TOPIC/humidity/command

co2 BASE_TOPIC/co2 BASE_TOPIC/co2/command

energy BASE_TOPIC/energy BASE_TOPIC/energy/command

camera BASE_TOPIC/camera BASE_TOPIC/camera/command

digital BASE_TOPIC/digital BASE_TOPIC/digital/command

noise BASE_TOPIC/noise BASE_TOPIC/noise/command

weight BASE_TOPIC/weight BASE_TOPIC/weight/command

uv BASE_TOPIC/uv BASE_TOPIC/uv/command

rain BASE_TOPIC/rain BASE_TOPIC/rain/command

wind BASE_TOPIC/wind BASE_TOPIC/wind/command

attendance BASE_TOPIC/attendance BASE_TOPIC/attendance/command

lighting BASE_TOPIC/lighting BASE_TOPIC/lighting/command

dali BASE_TOPIC/lighting BASE_TOPIC/lighting/command

shutter BASE_TOPIC/shutter BASE_TOPIC/shutter/command

display BASE_TOPIC/display BASE_TOPIC/display/command

access BASE_TOPIC/access BASE_TOPIC/access/command

e.g temperature sensor PUBLISH its value in ​BASE_TOPIC/temperature
… and it also SUBSCRIBE to ​BASE_TOPIC/temperature/command to receive orders (e.g
frequency acquisition change)

12 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

device
Basis of all sensors / actuators, end-devices are connected to a network and are identified via their
MAC address.
Each device ought to be able to:

● 'publish' some information (e.g status)
● 'subscribe' to a command topic

publish

BASE_TOPIC/device JSON frame

status is ​automatically​ published every 30mn (default)
{
 'unitID' : <​MAC_ADDR​>,
 'status': "OK",
 <optional fields>
}

Note: there's no 'values' because a device is not supposed to deliver such items.

The ​'status'​ key:

OK normal operation

FAIL an error occurred

Note: since this is only a user informative message, you can send any string you want!

subscribe

BASE_TOPIC/device/​command JSON frame

order {
 'dest' : <​MAC_ADDR​>,
 'order' : "​<action>​",
 <optional fields>
}

upgrade (firmware/application) {
 'dest' : <​MAC_ADDR​>,
 'order' : "​upgrade​",
 <optional fields>
}
optional fields may contain
- 'value' → url to firmware
 (e.g 'value' : 'http://xxx.bin')

frequency change order {
 'dest' : <​MAC_ADDR​>,
 'order' : "​frequency​",
 'value' : <​integer seconds​>
}

13 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

Note: 'frequency' is about 'status' delivery, not 'values' (whose message does not exists).

'order'​ command possible ​actions​:

reset reset application configuration and restart app.

restart restart application

reboot reboot the whole board

update update application configuration (i.e json config from sensOCampus)

upgrade upgrade firmware / application and restart

reinstall [Raspberry Pi] start whole SDCard reinstallation

status force immediate delivery of a status report to its class topic

frequency change frequency of ​status report​ delivery (min. 10mn, max 6h)

Note that status report is automatically published for each device while it is only
published on explicit request for the sensors and actuators.

14 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

temperature / luminosity / co2 / humidity / pressure / weight / uv
These classes of sensors send back ambient parameters. They are able to change their acquisition
frequency and they transmit both 'value' of the sensor along with its physical unit (e.g 'value_units' :
'celsius')

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

temperature, pressure, weight FLOAT

<others> INT

publish

BASE_TOPIC / CLASS JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'frequency': <​acquisition frequency seconds​>,
 <optional fields>
}
optional fields may contain
- 'sensors' → declared sensors
- 'i2c_sensors' → automatically discovered sensors

value is ​automatically​ published every <freq> seconds
{
 'unitID' : <​ID​>,
 ​'value'​: <​value​>,
 'value_units' : "<​string​>"
 <optional fields>
}
optional fields may contain
- 'subID' → either i2c addr of sensor or explicit value set at
sensOCampus level

subscribe

BASE_TOPIC/CLASS/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

15 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

frequency change order {
 'dest' : <​ID​>,
 'order' : "​frequency​",
 'value' : <​integer seconds​>
}

immediate acquisition order {
 'dest' : <​ID​>,
 'order' : "​acquire​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

acquire force immediate delivery of sensor value(s).

16 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

rain
This class of sensor sends back a broad range of values and values units (like ​energy​). Beware
that you could face changes in either name of units or number of items in lists (of course both will
get consistent anyway).

● 'value' : ['0.0', '0.0', '0.0', '0.0', '0.0', '0.0']

● 'value_units' : ['stormRain_cm', 'dayRain_cm', 'rain24_cm', 'hourRain_cm',

'rainRate_cm_per_hour', 'monthRain_cm']

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

rain LIST

publish

BASE_TOPIC / rain JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'frequency': <​acquisition frequency seconds​>,
 <optional fields>
}
optional fields may contain
- 'sensors' → declared sensors
- 'i2c_sensors' → automatically discovered sensors

value is ​automatically​ published every <freq> seconds
{
 'unitID' : <​ID​>,
 ​'value'​: [<​value​>, <​value​> …],
 'value_units' : ["<​string​>", "<​string​>" …]
 <optional fields>
}
optional fields may contain
- 'subID' → either i2c addr of sensor or explicit value set at
sensOCampus level

subscribe

BASE_TOPIC/rain/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

17 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

frequency change order {
 'dest' : <​ID​>,
 'order' : "​frequency​",
 'value' : <​integer seconds​>
}

immediate acquisition order {
 'dest' : <​ID​>,
 'order' : "​acquire​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

acquire force immediate delivery of sensor value(s).

18 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

wind
This class of sensor sends back a broad range of values and values units (like ​energy​). Beware
that you could face changes in either name of units or number of items in lists (of course both will
get consistent anyway).

● 'value' : [326.25, 3.79, 9.66, 315.0]

● 'value_units' : ['windDir', 'windSpeed_kph', 'windGust_kph', 'windGustDir']

Unless otherwise stated, wind directions are degrees (direction where the wind is blowing to) and
wind speeds are kilometers per hour.

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

wind LIST

publish

BASE_TOPIC / wind JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'frequency': <​acquisition frequency seconds​>,
 <optional fields>
}
optional fields may contain
- 'sensors' → declared sensors
- 'i2c_sensors' → automatically discovered sensors

value is ​automatically​ published every <freq> seconds
{
 'unitID' : <​ID​>,
 ​'value'​: [<​value​>, <​value​> …],
 'value_units' : ["<​string​>", "<​string​>" …]
 <optional fields>
}
optional fields may contain
- 'subID' → either i2c addr of sensor or explicit value set at
sensOCampus level

19 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

subscribe

BASE_TOPIC/wind/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

frequency change order {
 'dest' : <​ID​>,
 'order' : "​frequency​",
 'value' : <​integer seconds​>
}

immediate acquisition order {
 'dest' : <​ID​>,
 'order' : "​acquire​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

acquire force immediate delivery of sensor value(s).

20 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

energy
Power and energy consumption is usually gathered from Modbus energy meters. This kind of
sensor can't be automatically detected, hence requiring a sensOCampus definition.

Moreover, each sensor gives a bunch a data (power, freq, energy, power_factor, intensity,

voltage …) all packed as a list in the 'value' field along with their corresponding units in
'value_units':

● 'value' : ['158426.00', '158420.00', '235.22', '0.14', '20.00', '20.00', '30.00',

'0.70']

● 'value_units' : ['Wh', 'Ea+', 'V', 'A', 'W', 'VAR', 'VA', 'cosPhi']

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

energy LIST

publish

BASE_TOPIC / energy JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'frequency' : <​acquisition frequency seconds​>,
 'backend' : <​backend type​>,
 <optional fields>
}
optional fields may contain
- 'link' : "/dev/usb0" (for example),
- 'link_speed' : 9600,
- 'nodes' : [(<modbus addr>,<meter_name>), …]

value is ​automatically​ published every <freq> seconds
{
 'unitID' : <​ID​>,
 ​'value'​: [<​value​>, <​value​> …],
 'value_units' : ["<​string​>", "<​string​>" …]
}
Note: see above for a description of 'value' and
'value_units'

<​backend type​>​ possible values:

modbus either RS-485 or TCP modbus energy meter

rf868 868MHz energy meter (from consOCampus project)

unknown as you guess ;)

21 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

subscribe

BASE_TOPIC/energy/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

frequency change order {
 'dest' : <​ID​>,
 'order' : "​frequency​",
 'value' : <​integer seconds​>
}

immediate acquisition order {
 'dest' : <​ID​>,
 'order' : "​acquire​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

acquire force immediate delivery of sensor value(s).

22 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

camera

23 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

digital
This class of sensor is related to everything that is relevant to digital inputs (e.g open window
detector, motion sensor etc). This kind of sensor ought to get declared at the sensOCampus level.

For each event on a digital input (i.e rising_edge and falling_edge), a message will be sent
immediately (i.e no timer involved but direct hardware events management).

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

digital INT

publish

BASE_TOPIC / digital JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'sensors': [[101, "button", "ilot1"], [102, "presence",
"ilot1"]]
}
'sensors' : [(input, type, subID), …] these values are
coming from sensOCampus definitions

value is ​automatically​ published for each event on input(s)
{
 'unitID' : <​ID​>,
 ​'value'​: 1,
 'input' : 102,
 'type' : "presence" or "on_off" or ...
 'subID' : "ilot1"
}

subscribe

BASE_TOPIC/digital/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

24 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

25 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

noise
This sensor amplifies sound from a microphone and sets a threshold on a comparator delivering
pulses when sound intensity goes beyond. Pulses count are recorded over a sliding window giving
their total number for an elapsed time (default 5s). If this total number of pluses is higher than a
user defined threshold, then a noise message is sent.
Thus, this sensor is driven by two threshold:

● sensitivity​ → 0 to 100%. Set DAC output to the comparator,
● threshold​ → noise limit (pulses count).

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

noise INT

publish

BASE_TOPIC / noise JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'sensitivity' : <​0 to 100%​>,
 'threshold' : <​integer​>,
 <optional fields>
}
optional fields may contain
- '_scan_window' → size of sliding window

value is ​automatically​ published upon noise limit reached
{
 'unitID' : <​ID​>,
 ​'value'​: <​sum pulses count​>,
 'value_units' : "pulses"
 <optional fields>
}
optional fields may contain
- 'input' → pin used to count pulses
- 'subID' → DAC i2c addr

subscribe

BASE_TOPIC/noise/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

26 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

change sensitivity order {
 'dest' : <​ID​>,
 'order' : "​sensitivity​",
 'value' : <​integer 0 to 100%​>
}

change noise limit threshold order
(i.e pulse count limit)

{
 'dest' : <​ID​>,
 'order' : "​threshold​",
 'value' : <​integer​>
}

immediate acquisition order {
 'dest' : <​ID​>,
 'order' : "​acquire​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

sensitivity set new value to DAC output used as input to the comparator

threshold set noise limit through a maximum number of pulses count across the

whole sliding windows

acquire force immediate delivery of sensor value(s).

Note: there's no 'frequency' order because value delivery is not dependent on a timer.

27 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

attendance
This class of sensor is related to everything that is relevant to flow of people, bicycles, cars etc.
These sensors give an estimation about a flow of people for example that are going in or out of a
place. This can also be used to simply count a number of people in a room.

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

attendance INT

publish

BASE_TOPIC / attendance JSON frame

status is published on request
{
 'unitID' : <​ID​>,
 'type': '[FLOW | COUNTER]'
}
e.g people flow meters, car counters ...

value is ​automatically​ published for each event on input(s)
{
 'unitID' : <​ID​>,
 ​'value'​: <int>,
 'value_units' : "people" or "car" or "bicycle" …,
 'type': '[FLOW | COUNTER]',
 'subID' : [<optional>]
}

subscribe

BASE_TOPIC/digital/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : "​status​"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

28 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

lighting
Like all actuators, its setup is defined at the sensOCampus level.
This actuator drives various lighting command systems like ​telerupteur or ​directly connected
lights sources.

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

lighting NONE

publish

BASE_TOPIC / lighting JSON frame

status is published on request ​and​ upon light event (on, off)
{
 'unitID' : <​ID​>,
 'status': '[ON | OFF | unknown]'
}

subscribe

BASE_TOPIC/lighting/​command JSON frame

order {
 'dest' : <​ID​>,
 'order' : '[​ON​ | ​OFF​] or ​status​'
 <optional fields>
}
optional fields may contain
- 'value' : '<0 to 100>' → percentage of luminosity

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

ON or OFF set output to ON or OFF.

Note: if teleruptor type, any order will just toggle the output (i.e we

don't know whether it is on or off)

Note: for variable lighting systems, an additional 'value' field may

contains an integer ranging from 0 to 100 (percents)

29 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

dali

30 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

shutter
Like all actuators, its setup is defined at the sensOCampus level.
This actuator is able to drive two kinds of shutters (blinds): ​wired and ​wireless ​blinds (difference
is the way outputs are activated ---i.e short pulses for wireless).

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

shutter NONE

publish

BASE_TOPIC / shutter JSON frame

status is published on request ​and​ upon shutter event
{
 'unitID' : <​ID​>,
 'status' : '[CLOSED | OPENED | UNKNOWN]',
 'order' : '[UP | DOWN | STOP | UNKNOWN]'
}
'status' field reflect current state of the shutter
'order' field is the action currently undertaken

subscribe

BASE_TOPIC/shutter/​command JSON frame

order {
 'dest' : <​ID​>,
 'order' : '[​UP​ | ​DOWN​ | ​STOP​] or ​status​'
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

UP

DOWN

STOP

Set action to open, close or stop shutter in its current position

31 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

display
This kind of actuator is able to display some web pages. Users can send a list of web pages that
will get displayed according to a scheduling based on a timer value. This timer value may get
changed along with the others parameters like time_on and time_off that define when to switch ON
and when to switch OFF the display itself.

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

display NONE

publish

BASE_TOPIC / display JSON frame

status is published on request ​and​ upon page change ​and​ upon
order received ​and​ upon power mode change
{
 'unitID' : <​ID​>,
 'status' : '[OK | KO]',
 'pwr_status' : '[ON | OFF | UNKNOWN |
 FORCEON | FORCEOFF]',
 'frequency' : '<​web pages timeout​>',
 'time_on' : '<​when to set ON​>',
 'time_off' : '<​when to set OFF​>',
 'days_on' : '<​list of active days​>',
 'cur_url' : '<​currently displayed url​>',
 'def_url' : <True | False>
}
'status' field reflect browser's status (alive/dead)
'pwr_status' field reflect video output status
'frequency' field is the time a web page is displayed
'time_on' field is when we switch ON video (minutes of
day)
'time_off' field is when we switch OFF video (minutes of
day)
'days_on' list that starts with 1 --> monday
'cur_url' field is the currently displayed web page (will get
truncated to a maximum value)
'def_url' tells whether we display the default urls list

subscribe

BASE_TOPIC/display/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : '​status​'

32 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

}

order to set mode {
 'dest' : <​ID​>,
 'order' : ​'mode'​,
 'value' : '[​NORMAL​ | ​FORCEON​ | ​FORCEOFF​]'
}

order to set web pages frequency {
 'dest' : <​ID​>,
 'order' : ​'frequency'​,
 'value' : <​integer​>
}

order to set URLs list {
 'dest' : <​ID​>,
 'order' : ​'url'​,
 'value' : '​url​' or [​url1, url2, … urlx​]'
}

order to set 'time_on' events {
 'dest' : <​ID​>,
 'order' : ​'time_on''​,
 'value' : "06:45" or "1-5 06:45" or "1,3,4 09:00" ...
}

order to set 'time_off' events {
 'dest' : <​ID​>,
 'order' : ​'time_off''​,
 'value' : "19:30"
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

mode Set display mode.

At startup, we're in ​NORMAL​ mode (i.e ON or OFF).

If mode is set to ​FORCEON​, the display will switch ON and will then

automatically switch back to normal mode on next ​'time_on'​ event. If

set to ​FORCEOFF​, the display will stay OFF until the next ​reboot​! or

if you switch back to another mode.

frequency set timeout (seconds) before changing web page to display

url(s) Either set a single url (i.e string) or a list of urls

time_on Kind of 'crontab' value:

- hours:minutes

- time of days (e.g 1-5) + hours:minutes

e.g: "1-5 7:30"

time_off hours:minutes to switch OFF video output

e.g: "19:30"

33 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

34 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

access
This topic is dedicated to access control systems. These systems are usually installed on front
doors for rooms access security or related to external gates when they're involved in vehicle
access authorisation.

● end-device: ​publish​ to BASE_TOPIC / access
● end-device: ​subscribe​ to BASE_TOPIC / access / command

We describe below the various types of the ​'value'​ field:

CLASS 'value' field

access NONE

publish

BASE_TOPIC / access JSON frame

status is published upon ​status order​ received
{
 'unitID' : <​ID​>,
 'status' : '[OK | KO]',
 <others>
}
<others> could be a detected camera, a NFC reader etc.
See accessOCampus developer guide.

access is published upon a USER applying to an access
{
 'unitID' : <ID>,
 'seq_id' : '<access seq. number>,
 'auth_type' : <see accessOCampus doc>,
 'nfc_uid' : <see accessOCampus doc>,
 'passcode' : <see accessOCampus doc>,
 'thermal_detect' : <see accessOCampus doc>,
 'image' : <see accessOCampus doc>,
}
See accessOCampus developer guide for fields details.

subscribe

BASE_TOPIC/access/​command JSON frame

send status order {
 'dest' : <​ID​>,
 'order' : '​status​'
}

35 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

grant access order
(i.e door/gate will open)

{
 'dest' : <​ID​>,
 'seq_id' : <from access request seq_id field>,
 'order' : ​'grant'

}

deny access order
(i.e door/gate will remain closed)

{
 'dest' : <​ID​>,
 'seq_id' : <from access request seq_id field>,
 'order' : ​'deny'
}

ask_code order
(people has not been recognized
by the camera → ask for code)

{
 'dest' : <​ID​>,
 'order' : ​'ask_code'
}

force_open order {
 'dest' : <​ID​>,
 'order' : ​'force_open'
}

force_close order {
 'dest' : <​ID​>,
 'order' : ​'force_close'
}

normal mode order
(to cancel previous force_xxx
orders)

{
 'dest' : <​ID​>,
 'order' : ​'normal'
}

'order'​ command possible ​actions​:

status force immediate delivery of a status report to its class topic

grant subsequently to an 'access request', will authorize access

deny subsequently to an 'access request', will deny access

ask_code people not recognized (camera), ask for an additional code

force_open special_mode: system remains open (e.g journée portes ouvertes)

force_close special_mode: system remains closed (e.g burglar emergency)

normal end of 'special_mode': go back to regular ops

36 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

Annexe - A

A - 1 ESP8266 credentials sample code
bool​ ​_http_get​(const ​char​ *url, ​char​ *buf, ​size_t​ bufsize, const ​char​ *login, const ​char

*passwd) {

 HTTPClient http;

 http.begin(url);

 log_debug(F(​"\n[HTTP] GET url : "​)); log_debug(url); log_flush();

 ​// authentication ?

 if(login!=​NULL​ and passwd!=​NULL​) {

 http.setAuthorization(login, passwd);

 }

 ​// perform GET

 ​int​ httpCode = http.GET();

 ​// connexion failed to server ?

 if(httpCode < ​0​) {

 log_error(F(​"\n[HTTP] connexion error code : "​)); log_debug(httpCode,DEC); log_flush();

 return ​false​;

 }

 ​// check for code 200

 if(httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 snprintf(buf, bufsize, ​"%s"​, payload.c_str());

 }

 else {

 log_error(F(​"\n[HTTP] GET retcode : "​)); log_debug(httpCode,DEC); log_flush();

 }

 ​// close connexion established with server

 http.end();

 yield();

 return (httpCode == HTTP_CODE_OK);

}

37 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

// HTTP get

bool​ ​http_get​(const ​char​ *url, ​char​ buf[], ​size_t​ bufsize) {

 return _http_get(url, buf, bufsize, ​NULL​, ​NULL​);

}

// HTTP get with credentials

bool​ ​http_get​(const ​char​ *url, ​char​ *buf, ​size_t​ bufsize, const ​char​ *login, const ​char

*passwd) {

 return _http_get(url, buf, bufsize, login, passwd);

}

38 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

A - 2 sensOCampus configuration U4/302
● [2020, March] sens​OC​ampus configuration for u4/302 located end-device

[

{

"topic": "u4/302",

"modules":

[

{

"module": "Energy",

"unit": "modbus_rs485",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "backend",

"value": "modbus"

},

{

"param": "link",

"value": "/dev/ttyUSB0"

},

{

"param": "link_speed",

"value": 9600

},

{

"param": "subIDs",

"value": [

"chauffage",

"prises1",

"prises2",

"prises3"

]

},

{

"param": "addr",

"value": [

1,

88,

65,

62

]

}

]

},

{

"module": "Shutter",

"unit": "front",

"params":

[

{

"param": "shutterType",

"value": "wired"

},

{

"param": "courseTime",

"value": 20

},

{

"param": "upOutput",

"value": 100

},

{

"param": "downOutput",

"value": 101

}

39 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

]

},

{

"module": "Shutter",

"unit": "center",

"params":

[

{

"param": "shutterType",

"value": "wired"

},

{

"param": "courseTime",

"value": 20

},

{

"param": "upOutput",

"value": 102

},

{

"param": "downOutput",

"value": 103

}

]

},

{

"module": "Shutter",

"unit": "back",

"params":

[

{

"param": "shutterType",

"value": "wired"

},

{

"param": "courseTime",

"value": 20

},

{

"param": "upOutput",

"value": 104

},

{

"param": "downOutput",

"value": 105

}

]

},

{

"module": "Digital",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3",

"window"

]

},

{

"param": "inputs",

"value": [

101,

106,

111,

115

40 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

]

},

{

"param": "types",

"value": [

"presence",

"presence",

"presence",

"open_close"

]

}

]

},

{

"module": "Luminosity",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

100,

105,

110

]

},

{

"param": "min",

"value": [

0,

0,

0

]

},

{

"param": "max",

"value": [

1000,

1000,

1000

]

},

{

"param": "units",

"value": [

"",

"",

""

]

}

]

},

{

"module": "Luminosity",

"unit": "outside",

"params":

[

{

"param": "frequency",

"value": 60

},

41 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

{

"param": "subIDs",

"value": [

"ouest"

]

},

{

"param": "inputs",

"value": [

119

]

},

{

"param": "min",

"value": [

0

]

},

{

"param": "max",

"value": [

1400

]

},

{

"param": "units",

"value": [

"w/m2"

]

}

]

},

{

"module": "Temperature",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

103,

108,

113

]

},

{

"param": "min",

"value": [

5,

5,

5

]

},

{

"param": "max",

"value": [

40,

40,

40

]

},

42 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

{

"param": "units",

"value": [

"",

"",

""

]

}

]

},

{

"module": "Temperature",

"unit": "outside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ouest"

]

},

{

"param": "inputs",

"value": [

117

]

},

{

"param": "min",

"value": [

0

]

},

{

"param": "max",

"value": [

50

]

},

{

"param": "units",

"value": [

""

]

}

]

},

{

"module": "Humidity",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

104,

109,

43 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

114

]

},

{

"param": "min",

"value": [

30,

30,

30

]

},

{

"param": "max",

"value": [

80,

80,

80

]

},

{

"param": "units",

"value": [

"",

"",

""

]

}

]

},

{

"module": "Humidity",

"unit": "outside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ouest"

]

},

{

"param": "inputs",

"value": [

118

]

},

{

"param": "min",

"value": [

0

]

},

{

"param": "max",

"value": [

100

]

},

{

"param": "units",

"value": [

""

]

}

]

},

{

"module": "CO2",

"unit": "inside",

44 / 45

ne​OC​ampus / sens​OC​ampus device management / end-user device API

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

102,

107,

112

]

},

{

"param": "min",

"value": [

0,

0,

0

]

},

{

"param": "max",

"value": [

2000,

2000,

2000

]

},

{

"param": "units",

"value": [

"",

"",

""

]

}

]

}

]

}

]

45 / 45

