

neOCampus IoT
API for end-devices

End-devices API
Dr Thiebolt François, thiebolt@irit.fr

Modification table

Date Note

Mar.18 added display class messages

Nov.17 initial release

Abstract
This guide explains how to authenticate against the neOCampus IoT chain and then how to publish
/ subscribe data through the neOCampus MQTT broker and its associated device management
application named sensOCampus.

1

neOCampus / sensOCampus device management / end-user device API

Table of contents

Abstract 1

End-devices 4
sensOCampus credentials API 5

get_credentials 5
get_config 5
summary 6

MQTT topics conventions 7
msg to a command topic 7
msg to a class topic 8
unitID and subID 8

scenario example 9
sensors auto detection and messages publishing 9
sensors and actuators uniqueness 9
neOCampus MQTT sandbox 10

class topics and command topics 11
device 13

publish 13
subscribe 13

temperature / luminosity / co2 / humidity / weight / uv 15
publish 15
subscribe 15

energy 17
publish 17
subscribe 17

camera 19
digital 20

publish 20
subscribe 20

noise 21
publish 21
subscribe 21

lighting 23
publish 23
subscribe 23

dali 24
shutter 25

publish 25
subscribe 25

display 26

2

neOCampus / sensOCampus device management / end-user device API

publish 26
subscribe 26

Annexe-A 28
A - 1 ESP8266 credentials sample code 28
A - 2 sensOCampus configuration U4/302 30

3

neOCampus / sensOCampus device management / end-user device API

End-devices
We consider as a device (or end-device) a low-level piece of hardware connected to a network.
Such a device may encompasses one to several sensors / actuators. It is devices' firmware
responsibility to publish sensors values to the proper topic and to subscribe to relevant topics.

In upper example, device is a Raspberry Pi that could be connected to either a wired / wireless
network. Each kind of sensors / actuators map to a topic class. However, to be able to publish /
subscribe to the MQTT broker, device's client needs credentials. To obtain these credentials, you
first need to:

1. declare device's MAC address to the neOCampus technical staff,
2. interact with sensOCampus application that will give you your credentials.

sensOCampus is the main end-devices management application developed for neOCampus. It
takes care of managing device's own specific setup (MAC, configuration, status, topics etc).

4

neOCampus / sensOCampus device management / end-user device API

sensOCampus credentials API
We below describe the various involved steps that end-devices need to undertake with the
sensOCampus application to retrieve their credentials.

1. get_credentials → will give your device its mqtt related credentials,
2. get_config → your device will be given a MQTT base topic along with optional

configuration registered for each peculiar device at the sensOCampus level.

get_credentials

https://sensocampus.univ-tlse3.fr/device/credentials?mac=<device_mac_addr>

… response will be in JSON format

{

 "login" : "<mqtt_login>",

 "password" : "<mqtt_password>",

 "server" : "neocampus.univ-tlse3.fr",

 "port" : 1883

}

Please pay attention to the facts that:

● password field is a one-time delivery parameter → if you loose it, you need to apply for
new credentials at the neOCampus technical staff,

● "server" and "port" fields are optionals → you ought to have these default values in your
code if sensOCampus does not deliver them to your device.

It's device's own responsibility to save these credentials in some non volatile hardware. If you apply
for a credentials renewal operation, both login and password will change.

get_config

prepare HTTPS request with previously delivered credentials (https_auth) …

get https://sensocampus.univ-tlse3.fr/device/config

… response will be in JSON format

{

 'zones': [],

 'topics': ['bu/hall']
}

In this simple example, we have no specific configuration (empty zones) and we must take into
account the topics field as BASE_TOPIC.
Note: in case 'topics' contains multiple fields, just select the first one

5

neOCampus / sensOCampus device management / end-user device API

summary
You now have the following:

login "<mqtt_login>"

password "<mqtt_password>"

server neocampus.univ-tlse3.fr

port 1883 or 8883 (tls)

BASE_TOPIC bu/hall

Later, this BASE_TOPIC means that you've been granted the following topics rules:

bu/hall/+ publish & subscribe (i.e write & read)

bu/hall/+/command subscribe (i.e read)

In next section, we'll start to talk about the MQTT conventions that apply to neOCampus.

6

neOCampus / sensOCampus device management / end-user device API

MQTT topics conventions
The following describes various rules about topics conventions that apply to the neOCampus IoT.

● Each end-device get specified a BASE_TOPIC through its get_config procedure,
● A BASE_TOPIC is named accordingly to <building>/<room> , eg. u4/302
● Each sensor / actuator belongs to a class (e.g temperature, co2, shutter …) that is

appended to the device's BASE_TOPIC (e.g bu/hall/temperature), named a class topic,
● Each sensor / actuator subscribe to a command topic with a command token appended

to the class topic (e.g bu/hall/temperature/command)
● The end-device itself publish to a class topic (e.g bu/hall/device) and subscribe to a

command topic (e.g bu/hall/device/command)
● Each end-device is identified by its MAC_ADDRESS,
● A sensor is either identified by an ID specified at sensOCampus server or automatically

discovered at startup (e.g i2c scan). Sensors automatically discovered have an ID prefixed
with auto (e.g 'auto_C32F' with last 2 digits being end of device's MAC_ADDR),

● An actuator is identified by an ID specified at sensOCampus server (e.g u4/302/shutter
with 3 shutters identified as "front", "center" and "back").

● JSON frames' keys are mostly lower case ;)

Hence, for each device, each sensor and each actuator, there's:

● a class topic to publish to → BASE_TOPIC / CLASS
● a command topic to subscribe to → BASE_TOPIC / CLASS / command

msg to a command topic
Whenever a message is sent to a command topic (e.g bu/hall/shutter/command), the JSON frame
OUGHT to contain a 'dest' field.

● 'dest' : "all" → message is for all of those that subscribed to this command topic,
● 'dest' : "<ID>" → message is only for those whose ID matches

Example, if you wish to send an order to a specific device, 'dest' will contains its MAC_ADDRESS.
if you wish to send an order to a shutter, 'dest' will contains its ID specified at the sensOCampus
interface ("front" for example).

In example above, all shutters from u4 / campusfab will receive the "up" order thus opening all of
them.

7

neOCampus / sensOCampus device management / end-user device API

msg to a class topic
Whenever a device, a sensor or an actuator send a message to a class topic (e.g bu/hall/noise or
u4/cfab/device), associated JSON frame OUGHT to contains a 'unitID' field whose value reflect
sender's identity:

● 'unitID' : "<ID>"

'unitID' : "00:08:a2:1f:cb:3f" 'unitID' : 'auto_CB3F' 'unitID' : "front"

sender is a device.
Note that for compatibility, a
'unit' key with same value may
be added.

sender is an auto-detected
sensor usually associated with
'subID' : '<i2c_addr>'
Note the last 2 digits are from
device's MAC_ADDR

sender may be a sensor or
actuator declared at
sensOCampus level.
Note a 'subID' will be added if
it has been declared.

In example above, a shutter identified by its 'unitID' sent back its status through the class topic.

REMEMBER: when declaring several devices in a same room (e.g u4/campusfab), it is
users' responsibility to manage identity uniqueness of sensors or actuators declared at
the sensOCampus level.

unitID and subID
Whenever a sensor is automatically detected at startup (e.g i2c scan), it gets automatically
attributed a 'unitID' (identity) and a 'subID' (informative only field ---e.g i2c addr)

Example:

unitID subID Note

'unitID' : 'auto_CB8F' 'subID' : '32' At least one auto-detected sensor with i2c addr
0x20. Device's MAC_ADDR end with CB8F

'unitID' : 'inside' 'subID' : 'ilot1' A sensor or actuator declared at sensOCampus

Note: the nature of the sensor will be revealed according to it class topic publishing

8

neOCampus / sensOCampus device management / end-user device API

scenario example

Considering the following device featuring 3 x i2c sensors.

This will result in the following identity of sensors:

'unitID' 'subID' class & command topics

auto_CB8F 41 BASE_TOPIC/luminosity

BASE_TOPIC/luminosity/command

auto_CB8F 72 BASE_TOPIC/temperature

BASE_TOPIC/temperature/command

auto_CB8F 73 BASE_TOPIC/temperature

BASE_TOPIC/temperature/command

sensors auto detection and messages publishing
Each sensor value is sent as a separate message. It means for example that if you feature 8
temperature sensor on a same device, you'll have 8 different message when it comes to push the
data.

sensors and actuators uniqueness
It is IoT manager responsibility to ensure unitID uniqueness at the room-level.
Of course, if you add to the same room two devices whose MAC_ADDR last 2 digits are the same
… use another device ;)

9

neOCampus / sensOCampus device management / end-user device API

neOCampus MQTT sandbox
To ease testing of your sensor / actuator, you may give a try to the neOCampus MQTT sand box:

login test

passwd <ask for it!>

server neocampus.univ-tlse3.fr

port 1883

BASE_TOPIC TestTopic/#

Hence, you won't need the sensOCampus credentials and you are free to create / read / write in
any topic you want considering it is BASE_TOPIC biased.

10

neOCampus / sensOCampus device management / end-user device API

class topics and command topics

Below is a description of the currently existing classes:

Class Publish Subscribe

device BASE_TOPIC/device BASE_TOPIC/device/command

temperature BASE_TOPIC/temperature BASE_TOPIC/temperature/command

luminosity BASE_TOPIC/luminosity BASE_TOPIC/luminosity/command

humidity BASE_TOPIC/humidity BASE_TOPIC/humidity/command

co2 BASE_TOPIC/co2 BASE_TOPIC/co2/command

energy BASE_TOPIC/energy BASE_TOPIC/energy/command

camera BASE_TOPIC/camera BASE_TOPIC/camera/command

digital BASE_TOPIC/digital BASE_TOPIC/digital/command

noise BASE_TOPIC/noise BASE_TOPIC/noise/command

weight BASE_TOPIC/weight BASE_TOPIC/weight/command

uv BASE_TOPIC/uv BASE_TOPIC/uv/command

lighting BASE_TOPIC/lighting BASE_TOPIC/lighting/command

dali BASE_TOPIC/lighting BASE_TOPIC/lighting/command

shutter BASE_TOPIC/shutter BASE_TOPIC/shutter/command

display BASE_TOPIC/display BASE_TOPIC/display/command

11

neOCampus / sensOCampus device management / end-user device API

12

neOCampus / sensOCampus device management / end-user device API

device
Basis of all sensors / actuators, end-devices are connected to a network and are identified via their
MAC address.
Each device ought to be able to:

● 'publish' some information (e.g status)
● 'subscribe' to a command topic

publish

BASE_TOPIC/device JSON frame

status is automatically published every 30mn (default)
{
 'unitID' : <MAC_ADDR>,
 'status': "OK",
 <optional fields>
}

Note: there's no 'values' because a device is not supposed to deliver such items.

The 'status' key:

OK normal operation

FAIL an error occurred

Note: since this is only a user informative message, you can send any string you want!

subscribe

BASE_TOPIC/device/command JSON frame

order {
 'dest' : <MAC_ADDR>,
 'order' : "action",
 <optional fields>
}

upgrade (firmware/application) {
 'dest' : <MAC_ADDR>,
 'order' : "upgrade",
 <optional fields>
}
optional fields may contain
- 'value' → url to firmware
 (e.g 'value' : 'http://xxx.bin')

frequency change order {
 'dest' : <MAC_ADDR>,
 'order' : "frequency",
 'value' : <integer seconds>
}

13

neOCampus / sensOCampus device management / end-user device API

Note: 'frequency' is about 'status' delivery, not 'values' (whose message does not exists).

'order' command possible actions:

reset reset application configuration and restart app.

restart restart application

reboot reboot the whole board

update update application configuration (i.e json config from sensOCampus)

upgrade upgrade firmware / application and restart

reinstall [Raspberry Pi] start whole SDCard reinstallation

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

Note that status report is automatically published for each device while it is only
published on explicit request for the sensors and actuators.

14

neOCampus / sensOCampus device management / end-user device API

temperature / luminosity / co2 / humidity / weight / uv
These class of sensors send back ambient parameters. They are able to change their acquisition
frequency and they transmit both 'value' of the sensor along with its physical unit (e.g 'value_units' :
'celsius')

publish

BASE_TOPIC / CLASS JSON frame

status is published on request
{
 'unitID' : <ID>,
 'frequency': <acquisition frequency seconds>,
 <optional fields>
}
optional fields may contain
- 'sensors' → declared sensors
- 'i2c_sensors' → automatically discovered sensors

value is automatically published every <freq> seconds
{
 'unitID' : <ID>,
 'value': <value>,
 'value_units' : "<string>"
 <optional fields>
}
optional fields may contain
- 'subID' → either i2c addr of sensor or explicit value set at
sensOCampus level

subscribe

BASE_TOPIC/CLASS/command JSON frame

order {
 'dest' : <ID>,
 'order' : "status"
}

frequency change order {
 'dest' : <ID>,
 'order' : "frequency",
 'value' : <integer seconds>
}

immediate acquisition order {
 'dest' : <ID>,
 'order' : "acquire"
}

'order' command possible actions:

15

neOCampus / sensOCampus device management / end-user device API

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

acquire force immediate delivery of sensor value(s).

16

neOCampus / sensOCampus device management / end-user device API

energy
Power and energy consumption is usually gathered from Modbus energy meters. This kind of
sensor can't be automatically detected, hence requiring a sensOCampus definition.

Moreover, each sensor gives a bunch a data (power, freq, energy, power_factor, intensity,

voltage …) all packed as a list in the 'value' field along with their corresponding units in
'value_units':

● 'value' : ['158426.00', '158420.00', '235.22', '0.14', '20.00', '20.00', '30.00',

'0.70']

● 'value_units' : ['Wh', 'Ea+', 'V', 'A', 'W', 'VAR', 'VA', 'cosPhi']

publish

BASE_TOPIC / energy JSON frame

status is published on request
{
 'unitID' : <ID>,
 'frequency' : <acquisition frequency seconds>,
 'backend' : <backend type>,
 <optional fields>
}
optional fields may contain
- 'link' : "/dev/usb0" (for example),
- 'link_speed' : 9600,
- 'nodes' : [(<modbus addr>,<meter_name>), …]

value is automatically published every <freq> seconds
{
 'unitID' : <ID>,
 'value': <value>,
 'value_units' : "<string>"
}
Note: see above for a description of 'value' and
'value_units'

<backend type> possible values:

modbus either RS-485 or TCP modbus energy meter

rf868 868MHz energy meter (from consOCampus project)

unknown as you guess ;)

subscribe

17

neOCampus / sensOCampus device management / end-user device API

BASE_TOPIC/energy/command JSON frame

order {
 'dest' : <ID>,
 'order' : "status"
}

frequency change order {
 'dest' : <ID>,
 'order' : "frequency",
 'value' : <integer seconds>
}

immediate acquisition order {
 'dest' : <ID>,
 'order' : "acquire"
}

'order' command possible actions:

status force immediate delivery of a status report to its class topic

frequency change frequency of status report delivery (min. 10mn, max 6h)

acquire force immediate delivery of sensor value(s).

18

neOCampus / sensOCampus device management / end-user device API

camera

19

neOCampus / sensOCampus device management / end-user device API

digital
This class of sensor is related to everything that is relevant to digital inputs (e.g open window
detector, motion sensor etc). This kind of sensors ought to get declared at the sensOCampus level.

For each event on a digital input (i.e rising_edge and falling_edge), a message will be sent
immediately (i.e no timer involved but direct hardware events management).

publish

BASE_TOPIC / digital JSON frame

status is published on request
{
 'unitID' : <ID>,
 'sensors': [[101, "button", "ilot1"], [102, "presence",
"ilot1"]]
}
'sensors' : [(input, type, subID), …] these values are
coming from sensOCampus definitions

value is automatically published for each event on input(s)
{
 'unitID' : <ID>,
 'value': 1,
 'input' : 102,
 'type' : "presence",
 'subID' : "ilot1"
}

subscribe

BASE_TOPIC/digital/command JSON frame

order {
 'dest' : <ID>,
 'order' : "status"
}

'order' command possible actions:

status force immediate delivery of a status report to its class topic

20

neOCampus / sensOCampus device management / end-user device API

noise
This sensor amplifies sound from a microphone and set a threshold on a comparator delivering
pulses when sound intensity goes beyond. Pulses count are recorded over a sliding window giving
their total number for an elapsed time (default 5s). If this total number of pluses is higher than a
user defined threshold, then a noise message is sent.
Thus, this sensor is driven by two threshold:

● 'sensitivity' → 0 to 100%. Set DAC output to the comparator,
● 'threshold' → noise limit (pulses count).

publish

BASE_TOPIC / noise JSON frame

status is published on request
{
 'unitID' : <ID>,
 'sensitivity' : <0 to 100%>,
 'threshold' : <integer>,
 <optional fields>
}
optional fields may contain
- '_scan_window' → size of sliding window

value is automatically published upon noise limit reached
{
 'unitID' : <ID>,
 'value': <sum pulses count>,
 'value_units' : "pulses"
 <optional fields>
}
optional fields may contain
- 'input' → pin used to count pulses
- 'subID' → DAC i2c addr

subscribe

BASE_TOPIC/noise/command JSON frame

order {
 'dest' : <ID>,
 'order' : "status"
}

order to change sensitivity {
 'dest' : <ID>,
 'order' : "sensitivity",
 'value' : <integer 0 to 100%>
}

order to change noise limit {

21

neOCampus / sensOCampus device management / end-user device API

threshold (i.e pulse count limit) 'dest' : <ID>,
 'order' : "threshold",
 'value' : <integer>
}

immediate acquisition order {
 'dest' : <ID>,
 'order' : "acquire"
}

'order' command possible actions:

status force immediate delivery of a status report to its class topic

sensitivity set new value to DAC output used as input to the comparator

threshold set noise limit through a maximum number of pulses count across the

whole sliding windows

acquire force immediate delivery of sensor value(s).

Note: there's no 'frequency' order because values delivery is not dependant of a timer.

22

neOCampus / sensOCampus device management / end-user device API

lighting
Like all actuators, its setup is defined at the sensOCampus level.
This actuator drives various lighting command systems like telerupteur or directly connected
lights sources.

publish

BASE_TOPIC / lighting JSON frame

status is published on request and upon light event (on, off)
{
 'unitID' : <ID>,
 'status': '[ON | OFF | unknown]'
}

subscribe

BASE_TOPIC/lighting/command JSON frame

order {
 'dest' : <ID>,
 'order' : '[ON | OFF] or status'
}

'order' command possible actions:

status force immediate delivery of a status report to its class topic

ON or OFF set output to ON or OFF.

Note: if teleruptor type, any order will just toggle the output (i.e we

don't know whether it is on or off)

23

neOCampus / sensOCampus device management / end-user device API

dali

24

neOCampus / sensOCampus device management / end-user device API

shutter
Like all actuators, its setup is defined at the sensOCampus level.
This actuator is able to drive two kinds of shutters (blinds): wired and wireless blinds (difference
is the way outputs are activated ---i.e short pulses for wireless).

publish

BASE_TOPIC / shutter JSON frame

status is published on request and upon shutter event
{
 'unitID' : <ID>,
 'status' : '[CLOSED | OPENED | UNKNOWN]',
 'order' : '[UP | DOWN | STOP | UNKNOWN]'
}
'status' field reflect current state of the shutter
'order' field is the action currently undertaken

subscribe

BASE_TOPIC/shutter/command JSON frame

order {
 'dest' : <ID>,
 'order' : '[UP | DOWN | STOP] or status'
}

'order' command possible actions:

status force immediate delivery of a status report to its class topic

UP

DOWN

STOP

Set action to open, close or stop shutter in its current position

25

neOCampus / sensOCampus device management / end-user device API

display
This kind of actuator is able to display some web pages. Users can send a list of web pages that
will get displayed according to a scheduling based on a timer value. This timer value may get
changed along with others parameters like time_on and time_off that define when to switch ON
and when to switch OFF the display itself.

publish

BASE_TOPIC / display JSON frame

status is published on request and upon page change and upon
order received and upon power mode change
{
 'unitID' : <ID>,
 'status' : '[OK]KO]',
 'pwr_status' : '[ON | OFF | UNKNOWN |
 FORCEON | FORCEOFF]',
 'frequency' : '<web pages timeout>',
 'time_on' : '<when to set ON>',
 'time_off' : '<when to set OFF>',
 'cur_url' : '<currently displayed url>',
 'def_url' : <True | False>
}
'status' field reflect browser's status (alive/dead)
'pwr_status' field reflect video output status
'frequency' field is the time a web page is displayed
'time_on' field is when we switch ON video (minutes of
day)
'time_off' field is when we switch OFF video (minutes of
day)
'cur_url' field is the currently displayed web page (will get
truncated to a maximum value)
'def_url' tells whether we display the default urls list

subscribe

BASE_TOPIC/display/command JSON frame

order to retrieve status {
 'dest' : <ID>,
 'order' : 'status'
}

order to set mode {
 'dest' : <ID>,
 'order' : 'mode',
 'value' : '[NORMAL | FORCEON | FORCEOFF]'
}

order to set web pages frequency {

26

neOCampus / sensOCampus device management / end-user device API

 'dest' : <ID>,
 'order' : 'frequency',
 'value' : <integer>
}

order to set URLs list {
 'dest' : <ID>,
 'order' : 'url',
 'value' : 'url' or [url1, url2, … urlx]'
}

order to set 'time_on' events {
 'dest' : <ID>,
 'order' : 'time_on'',
 'value' : "06:45" or "1-5 06:45" or ...
}

order to set 'time_off' events {
 'dest' : <ID>,
 'order' : 'time_off'',
 'value' : "19:30"
}

'order' command possible actions:

status force immediate delivery of a status report to its class topic

mode Set display mode.

At startup, we're in NORMAL mode (i.e ON or OFF).

If mode is set to FORCEON, display will switch ON and will then

automatically switch back to normal mode on next 'time_on' event. If

set to FORCEOFF, display will stay OFF until next reboot! or if you

switch back to another mode.

frequency set timeout (seconds) before changing web page to display

url(s) Either set a single url (i.e string) or a list of urls

time_on Kind of 'crontab' value:

- hours:minutes

- time of day (e.g 1-5) + hours:minutes

e.g: "1-5 7:30"

time_off hours:minutes to switch OFF video output

e.g: "19:30"

27

neOCampus / sensOCampus device management / end-user device API

28

neOCampus / sensOCampus device management / end-user device API

Annexe-A

A - 1 ESP8266 credentials sample code
bool _http_get(const char *url, char *buf, size_t bufsize, const char *login, const char

*passwd) {

 HTTPClient http;

 http.begin(url);

 log_debug(F("\n[HTTP] GET url : ")); log_debug(url); log_flush();

 // authentication ?

 if(login!=NULL and passwd!=NULL) {

 http.setAuthorization(login, passwd);

 }

 // perform GET

 int httpCode = http.GET();

 // connexion failed to server ?

 if(httpCode < 0) {

 log_error(F("\n[HTTP] connexion error code : ")); log_debug(httpCode,DEC); log_flush();

 return false;

 }

 // check for code 200

 if(httpCode == HTTP_CODE_OK) {

 String payload = http.getString();

 snprintf(buf, bufsize, "%s", payload.c_str());

 }

 else {

 log_error(F("\n[HTTP] GET retcode : ")); log_debug(httpCode,DEC); log_flush();

 }

 // close connexion established with server

 http.end();

 yield();

 return (httpCode == HTTP_CODE_OK);

}

29

neOCampus / sensOCampus device management / end-user device API

// HTTP get

bool http_get(const char *url, char buf[], size_t bufsize) {

 return _http_get(url, buf, bufsize, NULL, NULL);

}

// HTTP get with credentials

bool http_get(const char *url, char *buf, size_t bufsize, const char *login, const char

*passwd) {

 return _http_get(url, buf, bufsize, login, passwd);

}

30

neOCampus / sensOCampus device management / end-user device API

A - 2 sensOCampus configuration U4/302

[

{

"topic": "u4/302",

"modules":

[

{

"module": "Shutter",

"unit": "front",

"params":

[

{

"param": "shutterType",

"value": "wired"

},

{

"param": "courseTime",

"value": 20

},

{

"param": "upOutput",

"value": 100

},

{

"param": "downOutput",

"value": 101

}

]

},

{

"module": "Shutter",

"unit": "center",

"params":

[

{

"param": "shutterType",

"value": "wired"

},

{

"param": "courseTime",

"value": 20

},

{

"param": "upOutput",

"value": 102

},

{

"param": "downOutput",

"value": 103

}

]

},

{

"module": "Shutter",

"unit": "back",

"params":

[

{

"param": "shutterType",

"value": "wired"

},

{

"param": "courseTime",

"value": 20

},

{

"param": "upOutput",

"value": 104

31

neOCampus / sensOCampus device management / end-user device API

},

{

"param": "downOutput",

"value": 105

}

]

},

{

"module": "Digital",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3",

"window"

]

},

{

"param": "inputs",

"value": [

101,

106,

111,

115

]

},

{

"param": "types",

"value": [

"presence",

"presence",

"presence",

"open_close"

]

}

]

},

{

"module": "Luminosity",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

100,

105,

110

]

},

{

"param": "min",

"value": [

32

neOCampus / sensOCampus device management / end-user device API

0,

0,

0

]

},

{

"param": "max",

"value": [

1000,

1000,

1000

]

},

{

"param": "units",

"value": [

"",

"",

""

]

}

]

},

{

"module": "Luminosity",

"unit": "outside",

"params":

[

{

"param": "frequency",

"value": 60

},

{

"param": "subIDs",

"value": [

"ouest"

]

},

{

"param": "inputs",

"value": [

116

]

},

{

"param": "min",

"value": [

0

]

},

{

"param": "max",

"value": [

1400

]

},

{

"param": "units",

"value": [

"w/m2"

]

}

]

},

{

"module": "Temperature",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

33

neOCampus / sensOCampus device management / end-user device API

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

103,

108,

113

]

},

{

"param": "min",

"value": [

5,

5,

5

]

},

{

"param": "max",

"value": [

40,

40,

40

]

},

{

"param": "units",

"value": [

"",

"",

""

]

}

]

},

{

"module": "Temperature",

"unit": "outside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ouest"

]

},

{

"param": "inputs",

"value": [

117

]

},

{

"param": "min",

"value": [

0

]

},

{

"param": "max",

"value": [

50

34

neOCampus / sensOCampus device management / end-user device API

]

},

{

"param": "units",

"value": [

""

]

}

]

},

{

"module": "Humidity",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

104,

109,

114

]

},

{

"param": "min",

"value": [

30,

30,

30

]

},

{

"param": "max",

"value": [

80,

80,

80

]

},

{

"param": "units",

"value": [

"",

"",

""

]

}

]

},

{

"module": "Humidity",

"unit": "outside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

35

neOCampus / sensOCampus device management / end-user device API

"ouest"

]

},

{

"param": "inputs",

"value": [

118

]

},

{

"param": "min",

"value": [

0

]

},

{

"param": "max",

"value": [

100

]

},

{

"param": "units",

"value": [

""

]

}

]

},

{

"module": "CO2",

"unit": "inside",

"params":

[

{

"param": "frequency",

"value": 0

},

{

"param": "subIDs",

"value": [

"ilot1",

"ilot2",

"ilot3"

]

},

{

"param": "inputs",

"value": [

102,

107,

112

]

},

{

"param": "min",

"value": [

0,

0,

0

]

},

{

"param": "max",

"value": [

2000,

2000,

2000

]

},

{

"param": "units",

"value": [

36

neOCampus / sensOCampus device management / end-user device API

"",

"",

""

]

}

]

}

]

}

]

37

