
neOSensorV5 | setup guide
Dr Thiebolt François

Abstract
This document is related to the hardware and software setup of the neOSensor device. At the time
of writing, we're talking about the setup of the neOSensor V5 and derivatives (i.e v5, v5.1).

1

neOSensor / setup guide

Modifications table

Date Note

apr.22 add 'User Guide' section

mar.22 added known issue about uniqueness of SHTxx and SCDxx per neOSensor

nov.21 added serial link @esp32 for CO2, PM sensors ...

aug.21 added PIR sensor HC-SR501 settings

jun.21 introducing neOSensor LoRaWAN, Heltec Cubecell based

feb.21 added neOSensor V5.1, esp32 based release

oct.20 generated new firmwares for neOSensor (esp8266 & esp32) and AirQuality (esp32)

sep.20 Upgrade to Arduino 1.8.13, esp8266 core 2.7.4 (stay with SDK 2.7.1)
First release to provide support for both esp32 and esp8266 :)
Moved to github ;)
added neOSensor and AirQuality boards in IDE's menu :)

may.20 Upgrade to arduino 1.8.12, esp8266 core 2.7.1

nov.19 Upgrade to arduino 1.8.10, esp8266 core 2.6.1, AP password

oct.18 Initial release

2

neOSensor / setup guide

TABLE OF CONTENTS

Abstract 1

Overview 5
onboard data integration 5
Services interactions 6
Hardware releases 6
Links 7

neOSensorV5 hw setup 8
I2c integrated circuits 8
PIR sensor vs oled display 8
Serial link 8
Analog inputs 8
Power 8

End-user setup 10
Wifi connection 10
Serial monitoring 15
NTP servers 15
(automatic) Firmware upgrades 16
sensOCampus credentials and config 16
Changing MQTT data endpoint 16
Supported sensors 17

Toolchains 18
neOSensor firmware compilation 18

[git] neOSensor repository 18
open neOSensor.ino 19
select proper hardware 20
Upload and monitor 21

[optional] libraries update 22
[dev. branch] WiFimanager 22

[custom mods] WiFimanager 22

Known issues 24
esp32 devkit missing EN capacitor 24
i2c multi-sensors uniqueness 24
multiple MQTT clients → max_sockets 24
esp software suites to upgrade 24
password protected AP 25
powering issues 25

[jun.21][LoRaWAN] CubeCell boot mode 26

3

neOSensor / setup guide

[sep.20] esp8266 WiFi reduced range 2.7.4 27

[nov.19] AP mode password 28

[admin] FW upgrades deployment 29
Retrieve code 29
Generate new firmware 29
[ESP8266][neOSensor] Upload new firmware to server 30
[ESP32][neOSensor] Upload new firmware to server 30
[ESP32][AirQuality] Upload new firmware to server 31

Annexe - A | Hardware addendum 32
PCB assembling 32

[aug.21] PIR sensor @ neOSensorV5 | HC-SR501 32
PIR sensor settings 32

Electret microphone 33
smd 0805 led polarity 34

[neOSensorV4] PCB issues 34
[neOSensorV4] HW test | led_blink 35

Retrieve code 37
Activate programming mode 37
monitoring serial line 40

Annexe -B | Older releases & deprecation 41
Temperature sensor | correction warning 41
[Mar.18] Temperature correction 41

activation 43

4

neOSensor / setup guide

Overview

>>> if you're just interested in re-building the firmware on your own → Toolchains <<<

While starting in 2015, we were just searching for a simple (and
cheap) way to monitor the ambient noise in the main library of
our campus. Having been successful, we've quickly been asked
to expand our neOSensor capabilities: temperature, humidity
and luminosity digital sensors were added.

Nowadays, those cheap sensors spread across and
above our campus while exhibiting support for a broader range
of sensors. We now provide support for COV, PM and CO2
sensors, especially the latest sensirion SCD4x CO2 whose
measurement is based on ultrasonic waves.

Last year, we started to add different kinds of sensors like PIR
sensors and we also started to propose alternatives casing like
a desktop version still made of 3mm acrylic elements.

At the same time we had undertaken a new, onboard
data integration principle. This led to a dramatic decrease in the overall data produced while still
maintaining the same high quality level of the data itself.
Latest developments geared us toward LoRaWAN networks. A first version based on CubeCell
modules has been produced … more to come, stay tuned!

onboard data integration
Each data of a sensor is acquired multiple
times till it becomes stable according to a per
class specific setup.
When a new data has been marked as stable,
we'll check if it differs from the last one that has
been sent to our MQTT broker:

data(new) - data(old) > x% ⇒ send

After having sent a new value, the sensor sleeps for a per class specified cooldown value (60s
most of the time). Anyway, whatever happens, (e.g luminosity sensors in our datacenter are most
of the time read at 0!) data is sent every 30mn at least.

5

neOSensor / setup guide

Services interactions
neOSensors end-devices send data and receive commands to/from a MQTT broker. More
information about MQTT rules at:

https://neocampus.univ-tlse3.fr/_media/sensocampusv2_end-devices_api.pdf

Credentials allowing connection to this MQTT broker will be delivered by the sensOCampus web
app. Alongside with its credentials, end-devices will get delivered their own specific configuration (if
any); such config may encompass stuff like serial link to a sensor (speed, parity etc), analog
sensors specifications … everything that the neOSensor is able to determine on its own.

It is worth mentioning that when you will configure your neOSensor, it will be possible to
activate the sandbox mode; in this mode, no request to the sensOCampus will be issued and the
device will be using the neOCampus MQTT sandbox.

Hardware releases
Since its inception in 2015, neOSensor has evolved over time :)

Date Release Module Note

2015 neOSensor esp8266 bare module 1st proto to BU

2017 neOSensor V2 esp8266 bare module

2018 neOSensor V3 esp8266 bare module

2018 neOSensor V4 esp8266 bare module

2020 neOSensor V5 esp32 30 pin board J.Maignan, removed noise sensor

6

https://neocampus.univ-tlse3.fr/_media/sensocampusv2_end-devices_api.pdf

neOSensor / setup guide

2021 LoRaWAN Heltec CubeCell dev. board first LoRaWAN proto

2021 neOSensor V5.1 esp32 30 pin board added support for IR sensors + analog + serial

2021 LoRaWAN V2 Heltec CubeCell dev. board Faulty PCB

2021 LoRaWAN V2.1 Heltec CubeCell dev. board

Links
[neOCampus] neOSensor project
https://neocampus.univ-tlse3.fr/projects/neosensor

[neOCampus] end-devices API and MQTT rules
https://neocampus.univ-tlse3.fr/_media/sensocampusv2_end-devices_api.pdf

[github] source code
https://github.com/fthiebolt/neOCampus-arduino

twitter
https://twitter.com/neOCampusUT3

7

https://neocampus.univ-tlse3.fr/projects/neosensor
https://neocampus.univ-tlse3.fr/_media/sensocampusv2_end-devices_api.pdf
https://github.com/fthiebolt/neOCampus-arduino
https://twitter.com/neOCampusUT3

neOSensor / setup guide

neOSensorV5 hw setup
As shown on next page, neOSensors features the following interfaces:

● one I2C bus to connect all i2c sensors together,
● one serial link featuring an EN (i.e enable) command
● 3 digital inputs (buttons) on top,
● one led on top
● one digital input for a PIR sensor
● 4 analog inputs

I2c integrated circuits
You can connect several i2c ICs till you ensure a non overlapping of their i2c addresses. All
devices are 3v3 powered. Some i2c interfaces feature an interrupt line used by smart sensors.

For example, the oled display (SH1106 128x64 monochrome) is an i2c device automatically
detected at startup.

PIR sensor vs oled display
From a mechanical point of view, you ought to select between a PIR sensor (HC-SR501) or the
oled display. From a configuration point of view, the PIR sensor can operate with the firmware
default parameters (i.e without any additional configuration from sensOCampus).

Serial link
Used by some sensors like SDS011 or IKEA PM sensors, the interface provides a +5V along with
an EN signal to activate or shutdown sensors that exhibit such capability.

Analog inputs
Only available on ESP32 boards, they are 3v3 max inputs. Hence, we provide a combination of
aop + resistor divider to achieve a 5v → 3v3 seamless translation. Of course, you can change on
your own the divider resistor bridge.

Power
An AMS1117-33 provides up to 800mA@3v3. It is unrelated to the (low power) 3v3 regulator
located on the ESP32 devkit itself.

8

neOSensor / setup guide

9

neOSensor / setup guide

End-user setup
Roughly speaking, our neOSensors always follow these power up steps:

1. get connected to a WiFi network,
2. NTP servers connexion,
3. check for firmware upgrade at https://neocampus.univ-tlse3.fr/images/
4. grab MQTT credentials and configuration from https://sensocampus.univ-tlse3.fr
5. auto detect digital sensors,
6. [main loop] process sensors and send back the data to our MQTT broker.

As an end-user, you'll only get involved at the first step: setting up WiFi connection :)

Wifi connection
Probably the most important operation a user
needs to carry out: setting up the network
configuration of a neOSensor end-device.

1. neOSensor activate a WiFi Access Point
(i.e AP) named: neOSensor_XXYY
The last four digits are the last two mac
address bytes written on the esp itself. In
this example your phone will discover a
new WiFi hotspot named neOSensor_6fd0

At this point, the front led will start fade in /
fade out cycles indicating network
connectivity is on the way.

10

https://neocampus.univ-tlse3.fr/images/
https://sensocampus.univ-tlse3.fr

neOSensor / setup guide

Note: if network credentials have already been set, neOSensor will try connection to the
WiFi gateway during 90s. Once successfully connected, neOSensor_XXXX AP will stay
open for 50s. If the network connection fails, neOSensor_XXXX AP will get opened for
5mn.

Note: pressing the CLR button for 10s while powering up the device will clear everything
related to both WiFi, MQTT and any configuration held onboard.

Scanning for WiFi networks, your smartphone just detected a neOSensor

11

neOSensor / setup guide

Now you get connected to your neOSensor's AP.
Depending on smartphones, you may get automagically redirected to the captive portal

located at https://192.168.4.1

12

https://192.168.4.1

neOSensor / setup guide

2. [optional] You may get asked for a password if you selected AP protection at compilation
time (disabled as default) [nov.19] AP mode password

3. Once your phone will get connected to the neOSensor AP, you will be redirected to a
captive portal enabling you to configure your end-device.

In case automatic redirection does not occur, head a
browser to http://192.168.4.1

Click on 'Configure WiFi' to select the network you
want your neOSensor to connect to.

13

http://192.168.4.1

neOSensor / setup guide

4. This is the general neOSensor configuration page allowing you to select one of the listed
WiFi networks and to select advanced options according to your needs.

Note: for hidden WiFi network, just type the name and password in the corresponding text
areas

5. [optional] advanced options
(1) neOCampus sandbox
In this mode, no access to the sensOCampus web server, instead the device will make use
of the default neOCampus MQTT sandbox.
(2) [internal use] only relevant to neOClock devices
(3) [internal use] DEPRECATED (nowadays, sensOCampus config will tell :))
(4) will erase saved WiFi credentials along with a FLASH formatting hence deleting all
locally held configurations (if any)

14

neOSensor / setup guide

6. Now click on ' SAVE ' and you can disconnect your smartphone from this WiFi AP
Note: anyway, the WiFi AP will disappear on its own.

Serial monitoring
Especially with embedded systems, it may get frustrating now knowing what's happening … hence
the serial monitor will come in handy :)

Serial link specifications:
● 115200 bauds
● 8N1

You can either monitor the serial link activity through some python application:
● in a tmux session, launch:

pip3 install python3-pyserial
miniterm-3.py /dev/ttyUSB0 115200

● [recommended] or just start your Arduino IDE and select Tools → Serial monitor

NTP servers
Your neOSensor will automatically connect a NTP server, either:

● (S)NTP server provided by your DHCP server,
● (S)NTP servers from pool.ntp.org

NTP sync will get automatically refreshed every 3600s and you will get some notice telling that
NTP sync occurred.

Note: on its own, it is not really important being NTP sync'ed because data arriving on the MQTT

15

neOSensor / setup guide

broker will get timestamped.

(automatic) Firmware upgrades
Each time a neOSensor starts, after having successfully connected to a WiFi network, it will
compare its current firmware version to the latest available on our servers.
Updating process is fully automatic and the neOSensor will reboot once its upgrade is over.

To ensure proper operation of the automatic firmware upgrade procedure, check that the network
your neOSensor device is connected to has access to the URLs shown below.

Note: you can check on your own the latest revision of the firmwares your neOSensor will upgrade
to:

● [esp8266] https://neocampus.univ-tlse3.fr/images/esp8266/neOSensor/default.json
● [esp32] https://neocampus.univ-tlse3.fr/images/esp32/neOSensor/default.json

As an example, at the time of writing, here is the content of the default.json for esp32

{
"description": "esp8266 based neOSensor",
"revision": 220328,
"release_date": "2022-03-28",
"image": "http://neocampus.univ-tlse3.fr/images/esp8266/neOSensor/firmware_latest.bin"

}

Note: right now, there's no option preventing an automatic firmware upgrade. One workaround is to
flash your device with a higher revision than the one on the server. Fw revision is composed of two
digits for <year><month><day>, eg. 220328 means 2022, March 28th

sensOCampus credentials and config
The sensOCampus web app is of internal use for all of our end-devices parts of our global
infrastructure (i.e it is not intended for end-users access ---right now).

To ensure proper operation, check that the network your neOSensor device is connected to has
access to the following URL:

● https://sensocampus.univ-tlse3.fr

Note: For the time being, a global rewrite of sensocampus2 is underway. This will include the ability
for end-users to log in to check the status and configuration of their devices.

Changing MQTT data endpoint
As specified earlier, all of our devices send data to our MQTT broker which is part of the overall
data acquisition chain.

Changing this data sink point can get achieved either ways:

16

https://neocampus.univ-tlse3.fr/images/esp8266/neOSensor/default.json
https://neocampus.univ-tlse3.fr/images/esp32/neOSensor/default.json
https://sensocampus.univ-tlse3.fr

neOSensor / setup guide

● contact the neOCamps technical team so they will change in the sensOCampus
configuration the MQTT target for your specific device,

● change in source code the default MQTT target and flash your custom firmware (pay
attention to the (automatic) Firmware upgrades)

Henceforth, you need to ensure network connectivity to your custom MQTT broker. Also, get
advised it will get requested to check for login/password along with topics ACLs (publish /
subscribe policies).

Supported sensors
One of the most important features of our neOSensors is the ability to automatically determine the
connected I2C integrated circuits. This way, we avoid most of the per-sensor configuration and we
let the device itself discover them :)

Current list of available drivers:

IC ref Type Auto Note

MCP9808 Temperature ✅

MAX44009 Luminosity ✅ Great sensor that gives human perceived light

TSL2561 Luminosity ✅

MCP47FEB, MCP47X6 DAC ✅ only for boards featuring noise detectors

SH1106 DISPLAY ✅ 1.3" oled driven by the (great) U8g2 lib

PMSX003, SDS011,
IKEA VINDRIKTNING

Particle Meters serial sensors for PM2.5 and PM10

Sensirion SPS3X Particle Meters [underway] serial sensors for PM2.5 and PM10

MHZ1X CO2 serial (optical) sensor

Sensirion SCD4x T/RH/CO2 ✅ Combined (fantastic) digital sensor calibrated

SHT2X, SHT3X T/RH ✅ Temperature and humidity sensors. Beware of
uncalibrated chinese clones :(

TM1637 7seg display only used by the neOClock devices class

LCC's VOC sensors various VOC Research project from LCC laboratory

17

neOSensor / setup guide

Toolchains
In order to download code to your neOSensor, you first need to set up the arduino toolchain along
with support for ESP8266, ESP32, CubeCell, STM32 ...

● Arduino toolchain (from arduino website)

install Arduino toolchain

Arduino 1.8.19 at the time of writing.

According to the neOSensor version you own, it'll be best to follow the installation steps described
at https://github.com/fthiebolt/neOCampus-arduino

● ESP8266 cross compiler

Launch Arduino → preferences → additional boards manager
http://arduino.esp8266.com/stable/package_esp8266com_index.json

Select ESP8266_Arduino version 2.7.4 2.7.1

● ESP32 cross compiler

Launch Arduino → preferences → additional boards manager
http://arduino.esp8266.com/stable/package_esp8266com_index.json

Select ESP32_Arduino version 1.0.6

Then launch script:

./deploy.sh

Note: ensure you're located within the root of the git repository you've just downloaded.

Check for additional steps specified at https://github.com/fthiebolt/neOCampus-arduino#readme

neOSensor firmware compilation
At this point, your desktop/laptop feature the following:

● arduino IDE installed (>= 1.8.19)
● python3 pyserial installed (used by arduino tools)
● ESP8266/ESP32 cross-compilers
● already defined path to your arduino libraries (i.e the neOSensor libs)
● deploy (bash) script launched

[git] neOSensor repository

git clone git@github.com:fthiebolt/neOCampus-arduino.git

18

https://github.com/fthiebolt/neOCampus-arduino
http://arduino.esp8266.com/stable/package_esp8266com_index.json
http://arduino.esp8266.com/stable/package_esp8266com_index.json
https://github.com/fthiebolt/neOCampus-arduino#readme
mailto:git@github.com

neOSensor / setup guide

open neOSensor.ino
Select the 'neosensor.ino' from <path>/neOCampus-arduino/neosensor

19

neOSensor / setup guide

select proper hardware
In this example, we'll select the ESP32 version of neOSensor

Note: the screenshot has been cropped to fit this page ;)

20

neOSensor / setup guide

Upload and monitor
Now you just click on 'Upload' and then select 'Tools → Serial Monitor'

21

neOSensor / setup guide

[optional] libraries update
All of our used libs are located within '<project_dir>/neosensor/libraries' … hence the
reason why you OUGHT to set Arduino workdir to '<project_dir>/neosensor' in Arduino
preferences.txt

Almost all of them are manageable through the 'Tools > Manage libraries'

[dev. branch] WiFimanager
This one requires special care since it is both the dev. branch along with custom mods …

From URL

https://github.com/tzapu/WiFiManager/tree/development

… select download ZIP and save files somewhere (NOT in our project!)

From Arduino IDE 'Sketch > Include library > add .ZIP Library'

… then you choose the previously saved 'WiFiManager-development.zip' file.

[custom mods] WiFimanager
● neosensor/libraries/WiFiManager/WiFiManager.h

…………
class WiFiManagerParameter {
public:
…………
// [feb.19] Francois: added as a public attr
const char *_customHTML;
…………

private:
…………
// [feb.19] Francois: moved as public a attr
// const char *_customHTML;
…………

22

https://github.com/tzapu/WiFiManager/tree/development

neOSensor / setup guide

};

23

neOSensor / setup guide

Known issues
We summarise all currently known issues.

esp32 devkit missing EN capacitor

Our colleagues from the Tr@nsNet project bought some ESP32 devkitV1. Unfortunately, these
esp32 boards were missing a small cap that prevented them from booting ! ⇒ add 0805 cap
footprint on PCB to enable RC circuit

i2c multi-sensors uniqueness
I2C sensors like SHT3x and SCD4x are shared across multiple modules due to the fact that they
host several sensors onboard (e.g SHT31 feature both temp and hygro).

The problem arises for an i2c end-device shared across multiple modules (e.g 'temperature' and
'humidity' modules regarding SHT3x). SHT3x exhibits cached values as static variables i.e shared
across all instances … even those featuring different i2c addresses :|
While it sounds reasonable for one i2c sensor, things turn to a dead-end when you have, let's say,
2 x SHT31 featuring two different I2C addresses … the same static vars are shared across ALL
instances.

One solution could be the SHT3x and SCD4x drivers to implement cached values sensitive to the
i2c addr (an array!)

multiple MQTT clients → max_sockets
Each of the neOSensors modules (i.e temperature, hygro, luminosity, noise etc etc), all of them
feature a MQTT client. This situation has been overcome by extending the maximum number of
available sockets in ESP8266 (8). ESP32 already features 16 TCP sockets.

esp software suites to upgrade
Due to the deprecation of the SPIFFS filesystem, we're still stuck to the following software suites:

24

neOSensor / setup guide

Devices Current Latest Notes

esp8266 2.7.1 3.0.2 We noticed that 2.7.4 has some WiFi limitations the 2.7.1
does not suffer from.

esp32 1.0.6 2.0.2

password protected AP
Some Android smartphones do not redirect to the http://192.168.4.1 captive portal used for
neOSensor configuration if an AP password has been enabled.

powering issues
neOSensor >= V5 enables you to get directly connected to your PC or any 5v PSU.
However, we discovered that USB ports on some Dell PCs (and probably others) exhibit a sub 5v
USB power leading to issues with the neOSensor operations.

We either try to use very high quality (and short) USB cables … or just get powered via a
Raspberry Pi power supply: this latter exhibits a 5.1v output, perfect for our device :)

>>> to guarantee proper operation of your neOSensor, make use of a RPi power supply <<<

25

http://192.168.4.1

neOSensor / setup guide

[jun.21][LoRaWAN] CubeCell boot mode
Since our failing neOSensor LoRaWAN pcb V2, we discovered how to enable the bootloader
mode:

● press USER button while pressing RST button or powering up the board

● or connect GPIO0 to GND and power the module !!

26

neOSensor / setup guide

[sep.20] esp8266 WiFi reduced range 2.7.4
We discover that new firmwares for ESP8266 based on SDK 2.7.4 exhibit a reduced WiFi
connectivity as neOSensors deployed with BU tour floor 8 were unable to get in touch with the
neOCampus infrastructure.

UNLESS OTHERWISE STATED … new firmwares intended to esp8266
neOSensors will make use of SDK rev. 2.7.1

27

neOSensor / setup guide

[nov.19] AP mode password
This new release features a password to gain access to the configuration mode of our neOSensor.

(1) WiFi scan → look for neOSensor_xxxx AP

(2) Connect to WiFi device → captive portal → enter AP passwd

neOSensor

Note: in case captive portal does not come alone … open a browser with http://192.168.4.1

(3) configuration mode
as usual ...

28

http://192.168.4.1

neOSensor / setup guide

[admin] FW upgrades deployment
Whenever you make improvements to your code, you'd like to push firmware upgrades to your
devices.

neOSensor's firmware embeds a unique way to OTA upgrade (i.e Over The Air) based on
current firmware comparison with those hosted on the neOCampus server.

>>> [oct.20] repeat the whole procedure for neOSensor (esp8266 & esp32) and AirQuality
(esp32). Boards support added in Arduino IDE :) <<<

Retrieve code

git clone https://github.com/fthiebolt/neOCampus-arduino

Generate new firmware
>>> Don't forget to select neOSensor board in the board setup <<<

First, update your code's firmware ver. → BOARD_FWREV

● <neOSensor_repo>/neosensor/libraries/boards/neOSensor.h

… then generate new binaries

29

https://github.com/fthiebolt/neOCampus-arduino

neOSensor / setup guide

that will generate files

<neOSensor_repo>/neosensor/neosensor.ino.generic.bin

[ESP8266][neOSensor] Upload new firmware to server
This time, we'll push the newly generated firmware to the server in order the other neOSensors
devices may upgrade :)

● /neocampus/images/<arch>/<device name>/firmware_latest.bin

scp neosensor.ino.generic.bin
root@neocampus.univ-tlse3.fr:/nfs/images/esp8266/neOSensor/neosensor_220328.bin

Note: firmware files are named against their release number

now connect as root to neocampus server to modify JSON file describing firmware

ssh root@neocampus
cd /nfs/images/esp8266/neOSensor
rm -f firmware_latest.bin
ln -s neosensor_220328.bin firmware_latest.bin

● /nfs/images/esp8266/neOSensor/default.json

{
"description": "esp8266 based neOSensor",
"revision": 220328,
"release_date": "2022-03-28",
"image": "http://neocampus.univ-tlse3.fr/images/esp8266/neOSensor/firmware_latest.bin"

}

… Now it's okay, other devices will get upgraded upon their next reboot :)

[ESP32][neOSensor] Upload new firmware to server
This time, we'll push the newly generated firmware to the server in order the other neOSensors
devices may upgrade :)

● /neocampus/images/<arch>/<device name>/firmware_latest.bin

scp neosensor.ino.node32s.bin
root@neocampus.univ-tlse3.fr:/nfs/images/esp32/neOSensor/neosensor_220328.bin

Note: firmware files are named against their release number

now connect as root to neocampus server to modify JSON file describing firmware

ssh root@neocampus
cd /nfs/images/esp32/neOSensor
rm -f firmware_latest.bin
ln -s neosensor_220328.bin firmware_latest.bin

30

neOSensor / setup guide

● /nfs/images/esp32/neOSensor/default.json

{
"description": "esp32 based neOSensor",
"revision": 220328,
"release_date": "2022-03-28",
"image": "http://neocampus.univ-tlse3.fr/images/esp32/neOSensor/firmware_latest.bin"

}

… Now it's okay, other devices will get upgraded upon their next reboot :)

[ESP32][AirQuality] Upload new firmware to server
This time, we'll push the newly generated firmware to the server in order the other AirQuality
devices may upgrade :)

>>> note: yes, it has the same filename but has been compiled with airquality flags <<<

● /neocampus/images/<arch>/<device name>/firmware_latest.bin

scp neosensor.ino.node32s.bin
root@neocampus.univ-tlse3.fr:/nfs/images/esp32/AirQuality/neosensor_201102.bin

Note: firmware files are named against their release number

now connect as root to neocampus server to modify JSON file describing firmware

ssh root@neocampus
cd /nfs/images/esp32/AirQuality
rm -f firmware_latest.bin
ln -s neosensor_201102.bin firmware_latest.bin

● /nfs/images/esp32/AirQuality/default.json

{
"description": "esp32 based AirQuality",
"revision": 201102,
"release_date": "2020-11-02",
"image": "http://neocampus.univ-tlse3.fr/images/esp32/AirQuality/firmware_latest.bin"

}

… Now it's okay, other devices will get upgraded upon their next reboot :)

31

neOSensor / setup guide

Annexe - A | Hardware addendum

PCB assembling
Below are a few notes about soldering devices on our PCBs.

[aug.21] PIR sensor @ neOSensorV5 | HC-SR501
Only applies to neOSensor >= V5 boards
https://lastminuteengineers.com/pir-sensor-arduino-tutorial/

PIR sensor settings
Set the yellow jumper to LOW (to the PCB's corner).
Set Delay anti C.W to the minimum (i.e pulse = 3s)
Set sensitivity according to the place

32

https://lastminuteengineers.com/pir-sensor-arduino-tutorial/

neOSensor / setup guide

Electret microphone
Only applies to neOSensor < v5
electret micro has a gnd pin, connect it to the proper GND pin on the PCB

33

neOSensor / setup guide

smd 0805 led polarity

WARNING: some 0805 leds feature different
symbols on top and bottom … top symbol is for
cathode !!

[neOSensorV4] PCB issues
● still exhibits power issues even with 2200 ohm RF-filter → set 1 x dedicated power supply

based on AMS1117-33 + 1 x 100mA 3v3 power supply for all of the others components
● move microphone away from IR sensor
● temperature sensor board, replace C2 with 1µF 1210 format
● U3 (DAC) footprint pins are too long
● C6 too close to pcb border
● U1 (AOP) pins ought to be a bit longer
● R11 replace 330ohm → 470ohm
● near C14, useless via on L2 pad!
● mark '-' on microphone footprint

Panelization note: set µUSB connector on the edges of the PCB (to benefit from the PCB
manufacturer's ultra precise cut!)

34

neOSensor / setup guide

[neOSensorV4] HW test | led_blink
We now present below our boards featuring:

● noise detector with DAC (ESP8266 version only)
● MCP9808 temperature sensor
● available i2c pins with power supply for additional sensors (e.g TSL2561)

First of all, let's see what our PCB looks like:

● neOSensor PCBv4 TOP view

35

neOSensor / setup guide

● neOSensor PCBv4 BOTTOM view

● MCP9808 temperature sensor based addon board PCB v4
(Note: board is self-describing with all pins explained)

36

neOSensor / setup guide

Retrieve code

git clone https://github.com/fthiebolt/neOCampus-arduino

Activate programming mode
To activate programming mode, you need to press the 'prog_sw' while powering up your device

Note: it is very important to use an external power supply as those from USB-serial converters will
not power your device properly.

37

https://github.com/fthiebolt/neOCampus-arduino

neOSensor / setup guide

● Set Arduino board as "neOSensor" from ESP8266 sub modules:

Additionally, pay attention to the following parameters:
● Port = /dev/ttyUSB0
● Speed = 115200
● Flash Size = 4M (1M SPIFFS) (now as default since sep.20)

>>> ERASE FLASH <<<
when upgrading to a newer core library, a lot of things change and mapping will be
described in a different way ⇒ select All Flash Contents.

● Set Arduino default sketchbook

Launch Arduino → preferences → sketchbook location
"<path>/neOCampus-arduino/neosensor"

This will enable the arduino toolchain to automatically find the libraries we're using.

● open blink sketch in your Arduino IDE

This is the default one provided with the Arduino toolchain

38

neOSensor / setup guide

39

neOSensor / setup guide

… then just click the 'upload' icon and it will compile and upload your application …
… and LED ought to blink brightly :)

Reaching this step means that most of the embedded sensor is working :-)

… the next step is full application deployment!

monitoring serial line

miniterm.py /dev/ttyUSB0 115200

40

neOSensor / setup guide

Annexe -B | Older releases & deprecation

Temperature sensor | correction warning
See [Mar.18] Temperature correction DEPRECATION
When you add a temperature sensor tied to the main PCB, it OUGHT to feature an i2c addr that
ought to be the last of its range, example:

MCP9808 i2c addr ranges from 0x18 to 0x1F, thus the sensor attached to the main PCB
ought to feature CX1,2 and 3 opened.

[Mar.18] Temperature correction
>>> DEPRECATED: NOT enabled as default since sep.21 <<<

We found that temperature sensors (mainly MCP9808) whose PCB is tied to the main PCB exhibit
a value #1°c above the value measured from the same sensor detached:

Thus we decided to compensate by software the measurement shift that was observed for a long
time. Hence, we took as a convention that the temperature sensor whose i2c addr is the last

41

neOSensor / setup guide

one will be the sensor tied to the main PCB, its measures will be software compensated.

[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":22.875,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)..................
[base] MQTT msg = {"value":67,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..........
[base] MQTT msg = {"value":21.875,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":22.875,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)....................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :).........
[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":22.875,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :).....................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :).......
[base] MQTT msg = {"value":21.875,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":23,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :).......................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :).....
[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":23.125,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :).........................
[base] MQTT msg = {"value":66,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":68,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)....
[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":23.25,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)..........................
[base] MQTT msg = {"value":67,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":64,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->

42

neOSensor / setup guide

TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..
[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":23.25,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)............................
[base] MQTT msg = {"value":63,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":65,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :).
[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":23.375,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :).............................
[base] MQTT msg = {"value":63,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............................
[base] MQTT msg = {"value":22,"value_units":"°c","subID":26,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":23.5,"value_units":"°c","subID":31,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/temperature
[temperature] successfully published msg :)
[base] MQTT msg = {"value":62,"value_units":"lux","subID":57,"unitID":"auto_55a9"} -->
TestTopic/neOSensor_55a9/luminosity
[luminosity] successfully published msg :)..............

activation
To activate temperature compensation of on-board i2c temperature sensor:

● <neOSensor>/neosensor/libraries/boards/neOSensor.h

43

