

LoRaWAN end-devices
user guide

Dr Thiebolt François

Modifications table

Date Note

nov.19 added overview and general usage of our LoRaWAN platform

oct.19 update related to RN2483A FW 1.0.5 upgrade (class C end-devices)

aug.17 Initial release

Abstract
This guide is both related to end-devices data exchanges with our lorawan infrastructure along with
detailed information about hardware and software setup for some end-devices like the RN2483A
lorawan module.

1

LoRaWAN end-devices | User guide

Table of contents

Abstract 1

Overview 3
end-device data exchange 4

end-devices uplinks / downlinks 4
end-device identity 4
MQTT publish / subscribe 4

My first data exchange 5

RN2483A + USB-serial converter 6

2

LoRaWAN end-devices | User guide

Overview
neOCampus benefits from a federated LoRaWAN infrastructure built from several LoRaWAN
gateways. These gateways does not process LoRa packets on their own but forward them to a
central server: this is the packet forwarder mode.

In the end, it means that we're featuring a centralized end-devices management that will
ease all of the lifecycle management process.

Overview of both uplinks and downlinks end-points at ne​OC​ampus MQTT broker:

3

LoRaWAN end-devices | User guide

end-device data exchange
Before going on with details about data exchange, you first ought to read a bit of documentation to
get accustomed with terms like:

● end-devices classes A, B or C,
● OTAA vs ABP,
● MQTT publish / subscribe paradigm.

In these practical exercises, we'll consider ​A class end-devices making use of the ​OTAA
connexion procedure.

end-devices uplinks / downlinks
Refers to the direction of data:

● uplink​ → end-device sending a data frame to the network,
● downlink​ → end-device receiving a data frame from the network.

end-device identity
An end-device exhibit a unique ​DevEUI​. It will get given access to an application specified through
an ​AppEUI​ + credential specified as an ​AppKey​:

● DevEUI
● AppEUI
● AppKey

These three parameters identify an end-device accessing an application.
At neOCampus, the application you'll be using is tied to the neOCampus MQTT broker.

MQTT publish / subscribe
As specified earlier, whenever an end-device send data to the network, this data will get ​published
by our LoRaWAN server to a topic in our MQTT broker:

● data uplink end-points ​TestTopic/lora/{devEUI}

It means that you, as an end-user, to be able to retrieve this data, ​you need to ​subscribe to this
topic.

To then send data to your end-device, you'll need to publish a message to

● data downlink end-point: ​TestTopic/lora/{devEUI}/command

4

LoRaWAN end-devices | User guide

My first data exchange
As a first step, you'll need to setup your end-device ​RN2483A + USB-serial converter

Then apply for the allocation of a DevEUI + Application credentials

You'll now write some ​python3 code making use of ​pyserial python module to be able to connect
(i.e 'join') with the gateway through the serial link of your RN2483A.
At this step, you can see the ongoing connexion operation through:

 ​https://lorawan.uni-tlse3.fr

Now that you've been able to 'join' with the lorawan infrastructure, it's time to send a simple 'Hello
world' and to retrieve it at the neOCampus MQTT broker. To achieve this in a simple way, I
recommend to make use of already written applications like 'MQTTBox' (for example) that you'll
find in the Google store app (free one of course)

To retrieve the data sent, you first need to connect with your MQTT client to the
neOCampus MQTT broker:

You create a new connection with:
● MQTT client name → whatever you want
● MQTT client id → ​don't touch​ (ought to be unique!)
● Protocol: ​mqtt/tcp
● Host: ​neocampus.univ-tlse3.fr
● login / password: ​test​ / <​ask me​>

Once connection is established, subscribe to your topic :)

5

https://lorawan.uni-tlse3.fr/

LoRaWAN end-devices | User guide

RN2483A + USB-serial converter
One of the very first widely available end-devices, it is still fairly popular due to its simplicity.

Microchip RN2483 is a LoRaWAN single chip solution that takes care of all of the LoRaWAN
issues. Host microcontroller uses a ​3.3v​ serial link to communicate with.

In this scenario, we first start to setup a CP2102 based USB to serial converter along with a
RN2483A on a dedicated breakout board.

In order to avoid power issues, we added a +3.3v regulator along with capacitors on the RN2483A
breakout board.

For proper operation, it is best to reset RN2483A on serial link start. To do so, we'll make use of
the CP2102's DTR line … but this line is normally +VCC and then switch to GND once serial link is
open … thus we'll invert DTR polarity from software :)

6

LoRaWAN end-devices | User guide

Miniterm install

pip3 install pyserial

Launch terminal (in a tmux session ---better)

francois@smart​[~] ​miniterm-3.py --dtr 0 /dev/ttyUSB0 57600

--- forcing DTR inactive

--- Miniterm on /dev/ttyUSB0 57600,8,N,1 ---

--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---

RN2483 1.0.5 Oct 31 2018 15:06:52

chip answer with its version number, here LoRaWAN stack revision 1.0.3 (i.e RN2483A)

sys get ver

RN2483 1.0.5 Oct 31 2018 15:06:52

sys get hweui

0004A30B001EB4D1

Note: commands won't appear because echo is OFF

7

